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Affinity isolation of protein complexes followed by protein identification by LC-MS/MS is an increasingly
popular approach for mapping protein interactions. However, systematic and random assay errors
from multiple sources must be considered to confidently infer authentic protein-protein interactions.
To address this issue, we developed a general, robust statistical method for inferring authentic
interactions from protein prey-by-bait frequency tables using a binomial-based likelihood ratio test
(LRT) coupled with Bayes’ Odds estimation. We then applied our LRT-Bayes’ algorithm experimentally
using data from protein complexes isolated from Rhodopseudomonas palustris. Our algorithm, in
conjunction with the experimental protocol, inferred with high confidence authentic interacting proteins
from abundant, stable complexes, but few or no authentic interactions for lower-abundance complexes.
The algorithm can discriminate against a background of prey proteins that are detected in association
with a large number of baits as an artifact of the measurement. We conclude that the experimental
protocol including the LRT-Bayes’ algorithm produces results with high confidence but moderate
sensitivity. We also found that Monte Carlo simulation is a feasible tool for checking modeling
assumptions, estimating parameters, and evaluating the significance of results in protein association
studies.
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Introduction

Revealing protein networks and their function, such as multi-
protein complexes responsible for DNA replication, transcrip-
tion, and protein degradation; cell signaling carried out by
kinase cascades in which protein-protein interactions mediate
phosphorylation; and metabolite channeling in which small
molecules are channeled between enzymes, is an important
component of systems biology research. Several methods exist
to characterize protein-protein interactions on a large scale,
including classical isolation of protein complexes by sedimen-
tation, cross-linking, surface plasmon resonance, imaging, two-
hybrid analyses, and affinity purifications. Of these, only two-
hybrid analysis 1-4 and affinity purification methods 5-7 are
readily scalable to a genomic level. Two-hybrid analyses initially
had problems with high false-positive identifications, but the
methods have been refined such that the most pressing issue
currently is reducing the false-negative rate. Affinity purification

methods isolate an affinity-tagged “bait” protein that interacts
as part of a protein complex with “prey” proteins.8 These
methods suffer from both false-positive identification of non-
biologically relevant interactions and from failure to identify
other authentic interactions (false negatives).9 The recent
development of affinity methods in which the bait protein is
expressed from a plasmid10 has not only resulted in the use of
affinity methods for a wider range of organisms, but also readily
allows for replicate experimental measurements in less geneti-
cally tractable organisms.

An affinity isolation assay uses an affinity-tagged bait protein
to isolate associated prey proteins from a cellular lysate.
Proteins are identified using liquid chromatography (LC)
tandem mass spectrometry (MS/MS), and protein associations
are inferred from the list of identified proteins.

In affinity isolation assays, systematic and random assay
errors can arise for a number of reasons. First, the proteins
could be incorrectly identified. In most affinity isolation assays,
the affinity-isolated proteins are treated with a proteolytic
enzyme such as trypsin, and the resulting tryptic peptides are
identified by liquid chromatography separation followed by
MS/MS. The error rates of this process can be controlled so
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that a low false-positive rate is obtained; however, this is at
the expense of a high false-negative rate.11-14 False negatives
can be due to failure to detect certain tryptic peptides that are
above or below the m/z scan range of the mass spectrometer,
or are not efficiently ionized. Also, despite the use of the LC
separation to provide temporal separation of peptides in line
with the mass spectrometric detection, the mixture of peptides
eluting from the LC at any given time may exceed the capacity
of the scanning program of the mass spectrometer to obtain
an MS-MS spectrum of every peptide. A high false-negative
rate can also occur if there is more than one protein complex
that can form with a selected bait, resulting in a heterogeneous
population of protein interactors. In this case, it may be that
one set of proteins is present in much lower concentrations
(so-called “substoichiometric binding”). The amount of prey
protein present may be undetectable because of dynamic range
issues. Dynamic range may also be an issue with affinity
isolation assays in which the bait protein is present at a much
higher concentration than the targeted prey proteins.

Second, depending on the experimental protocol, the relative
proportions of proteins present after the purification steps may
not reflect the proportions present in the cellular environment.
An incorrect proportion of proteins can either lead to a false
identification by driving the thermodynamic equilibrium to-
ward binding, or may lead to a missed identification by driving
the equilibrium toward dissociation.

Furthermore, the cell lysate is a well-mixed solution of
proteins in an affinity isolation. Within a cell, the local
concentration of some proteins can be quite high because of
cellular sorting of proteins, while others can be quite low,
though cells and biological systems in general follow thermo-
dynamic laws. Deviating from the native cellular environment
may be a major source of error (one not addressed here) in
affinity isolation assays that possibly limits the affinity isolation
methods to the identification of binary protein-protein inter-
actions. Accounting for these errors is necessary to confidently
infer significant cellular protein-protein interactions.

False positive prey identifications can occur if prey proteins
are isolated due to reasons other than in vivo interaction with
the bait protein. Proteins that (for example) are abundant in
the cell, or interact with the affinity resin itself rather than the
bait protein, may survive the affinity isolation and be detected
as preys across a large number of affinity isolation experiments,
regardless of whether there is an authentic interaction with the
bait.

Protein-protein interactions for Escherichia coli, and Sac-
charomyces cerevisiae have previously been studied using mass-
spectrometry outcomes and validation databases.5-7,15 Typi-
cally, statistical analyses performed on these associations has
been only descriptive. Gilchrist et al., however, statistically
analyzed the probability that two proteins associate in the same
protein complex using a Bayes’ Odds calculation with global
estimates of prior detection probabilities.16 Shen, Li, and Chen
furthered Gilchrist’s method by defining the rate of true
association in a proteome and integrating prey-prey and prey-
bait protein association rates into the model of all protein
pairs.17 The method proposed here estimates the Bayes’ Odds
for each prey-bait pair using individualized estimates of prior
probabilities of detection by exploiting the structure of an
experiment to parse prey proteins to make individualized
estimates of prior probabilities of detection.

Prey protein identifications form lists from an affinity isola-
tion LC-MS/MS assay that are cross-tabulated by bait protein

to form an annotated prey-by-bait frequency matrix. The matrix
summarizes the frequency at which each prey was observed
with each bait. The frequency pattern across a given row (prey),
or within a given column (bait), gives information about the
interactions between a prey and the baits, or a bait and the
prey, respectively. Both row and column frequency patterns
also reflect assay errors. Fundamental to our estimate of the
strength of each inference about a bait-prey interaction is an
evaluation of row homogeneity. We propose a scheme to
classify each prey protein represented in the frequency matrix
as “nonuniform” or “uniform” corresponding to prey being
exclusively detected with one or more baits (i.e., a non-
homogeneous pattern of detects), or non-exclusively detected
(i.e., a homogeneous pattern of detects or nondetects) across
all baits in the set. We then use this classification to estimate
individual prior probabilities of prey identification and poste-
rior probabilities of bait-prey interaction. We also use this
classification to screen for ubiquitous interactors and non-
interactors. These uses, however, are highly dependent upon
the baits selected and the design of the experiment.

Detection homogeneity is assessed, and uniformity assigned,
using a likelihood ratio test (LRT) by comparing the likelihood
of the data assuming a (uniform) homogeneous frequency
distribution to the likelihood of the data under all alternative
(nonuniform) non-homogeneous distributions. LRT modeling
assumptions are investigated, and conservative parameter and
p-value estimates are obtained using Monte Carlo simulation.
The probability of an interaction between each bait-prey pair
in the frequency matrix is then estimated by calculating its
posterior Bayes’ Odds of interaction from its observed fre-
quency and prior probability estimates that depend upon the
prey’s uniformity and the bait’s frequency distribution. For an
experiment that includes baits of sufficient diversity, the
algorithm can discriminate against artifacts in the form of preys
that are apparently detected for reasons other than an in vivo
interaction with the bait. The algorithm is illustrated with an
endogenous affinity isolation experiment investigating a small
group of hypothesized protein subnetworks of Rhodopseudomo-
nas palustris, including RNA polymerase, ATP synthase, DNA
polymerase, and the RNA degradosome (see Supporting Infor-
mation).

Materials and Methods

In an affinity isolation LC-MS/MS assay, proteins are
identified from lists of detected peptides and supporting data.
For our example analysis, we apply the “two-peptide” rule with
which we tentatively infer a protein is present in a sample if
two or more of a protein’s peptides are observed with SE-
QUEST18 search results of XCorr g 1.8 for singly charged ions,
g2.5 for doubly charged ions, or g3.5 for triply charged ions,
and DeltaCN g 0.08.19

Lists of prey protein identifications from an affinity isolation
LC-MS/MS assay are cross-tabulated by bait protein to form
an annotated prey-by-bait frequency matrix summarizing the
frequency at which each prey was observed with each bait.
‘Uniform’ prey exhibit a homogeneous frequency distribution
of positive MS identifications across a collection’s bait proteins.
‘Nonuniform’ prey have significantly higher, or lower, frequen-
cies for one or more baits relative to the others. The homoge-
neity of the frequency distribution for each prey across the
experiment is evaluated with a binomial-based Likelihood Ratio
Test (LRT). A prey protein is flagged “nonuniform” or “uniform”
by comparing the p-value of the LRT to a critical p-value
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selected to control the false discovery rate. The Bayes’ Odds of
interaction is estimated for each bait-prey pair with individu-
alized prior probability estimates based on the outcome of the
prey’s LRT.

Blind reliance on statistical theory, models, and results
undermines confidence and may produce erroneous inferences
about protein-protein interactions. To improve confidence and
reduce modeling errors, Monte Carlo simulation is used in
three ways. First, assumptions underpinning the LRT are
investigated for the employed design of the affinity isolation
experiment. Second, conservative parameter estimates are
made for LRT significance tests. Third, the LRT p-values are
estimated from simulated LRT null sampling distributions.

Classifying a Prey Protein by Its Detection Frequency
Profile. Classifying a prey protein with respect to the uniformity
of its detection frequency across baits relies on a statistical
hypothesis test comparing one probability model defined by a
null hypothesis about the homogeneity of prey detection across
baits to another probability model defined by an alternative
hypothesis encapsulating any non-homogeneous prey detec-
tion.

The biological null, or naive, hypothesis is that a given prey
protein uniformly associates, meaning that the given prey
associates with no baits or all baits equally. This translates into
the statistical null hypothesis that the probability pj of observing
the given prey protein with the jth bait protein is the same
probability p for all baits:

The number of times Sj that a particular prey protein is
observed in nj replicate samples of the jth bait protein can be
described by a binomial probability model. The likelihood of
the observed frequencies for B baits under the null hypothesis
is the product of the prey’s binomial probabilities:

where nj is the number of replicate LC-MS/MS runs of the jth
bait, and Sj is the number of times the prey is observed with
the jth bait.

The biological alternative hypothesis is that the prey protein
is a nonuniform associator. That is, the prey will associate with
at least one bait exclusively over the others, or the prey will
associate with almost all the baits excluding one or more. The
statistical alternative hypothesis is that at least one of the
probabilities pj of observing the given prey is not the same as
the probability p of observing the given prey with all j baits:

Under the alternative hypothesis, the likelihood of the
observed frequencies is

where pj is the expected proportion of observations a prey has
with the jth bait. The alternative likelihood equation is very
similar to the null likelihood, featuring pj in the place of p.

The interpretation of both the null and alternative hypoth-
eses depend upon the design of the affinity isolation experi-
ment, and particularly, the choice of bait proteins.

The Likelihood Ratio Test. The LRT compares the likelihood
of the observed frequencies for a given prey protein under the
statistical null hypothesis to the likelihood of the observed
frequencies under the statistical alternative hypothesis. If the
ratio favors the null hypothesis, the biological inference is that
a given prey protein is a uniform interactor. If the ratio favors
the alternative hypothesis, we infer that the prey protein
interacts nonuniformly. The LRT statistic is

where, in practice, the numerator or denominator is the
appropriate maximum likelihood estimate and the (large
sample) LRT statistic is employed:20,21

where p̂j ) Sj/nj is the observed proportion for the jth bait and

is the observed proportion across all the baits for a given prey.
The statistical significance of the LRT statistic JT is commonly

evaluated assuming that the number of replicates per bait is
large enough so that the sampling distribution of JT under the
null hypothesis follows approximately a ø2 distribution, a
questionable assumption given the low number of replicates,
often three or less, most often found in a large-scale affinity
isolation experiment. The validity of this approximation for a
given affinity isolation experiment may be evaluated empirically
using Monte Carlo (MC) simulation by comparing an MC-
simulated JT distribution to the appropriate øB-1

2 distribution.
The MC approach closely approximates the sampling dis-

tribution of JT for a given affinity isolation design (i.e., the
numbers of baits and replicates of each) by simulating thou-
sands of possible detection frequency profiles, computing JT

for each simulated profile under the null hypothesis, and then
compiling the empirical distribution (histogram) from these JT

values. This MC simulation is repeated for every overall
proportion p expected for the given experiment. If the sampling
distribution of the LRT statistic under the given p and design
of the affinity isolation experiment is well-approximated by a
ø2 distribution, then C ) (1 - R)100% of the simulated JT ’s
should be smaller than the øB-1,R

2 critical value. If the theo-
retical øB-1

2 distribution does not closely agree with the MC
sampling distributions, the common reliance on the øB-1

2

distribution to determine LRT significance is invalid (see
Supporting Information: The large sample assumption and LRT
significance).

Determining the Statistical Significance of the LRT. If the
ø2 assumption is not appropriate (which is likely, given few
replicates per bait), the statistical significance of LRT (or
p-value) may be estimated using a similar Monte Carlo simula-
tion and a conservative estimate for the row proportion, p̂bound,
that controls the false-positive rate and facilitates executing the
LRT test when the overall proportion is zero or one.22 The
conservative value p̂bound may be estimated in a separate Monte

Ho: pj ) p ∀ j

Lo(p) ) ∏
j)1

B (nj
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)pSj(1 - p)nj-Sj
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B (nj
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)pj
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(1)
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nj)
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Carlo exercise (see Supporting Information: Determining the
statistical significance of the LRT).

As in the ø2 assumption check, a MC approximation simu-
lates thousands of realizations of the experiment, computes JT

for each realization, and compiles the sampling distribution
from these values. Again, one realization is a set of observances
simulated using the binomial distribution under the null
hypothesis following the design of the affinity isolation experi-
ment. In this case, however, the MC approximation is repeated
for every observed overall proportion p̂ ) p̂bound for the
experiment.

To estimate the LRT p-value for a given prey protein, the
appropriate reference distribution simulation is chosen based
on the prey’s observed overall proportion p̂. The p-value is then
the proportion of simulated test statistics equal to or larger than
the observed test statistic.

Controlling the Rate of False-Positive LRTs. When evaluat-
ing a test for a given prey, the p-value is compared to an
appropriate false-positive rate (i.e., the rate at which the null
hypothesis is rejected when it is in fact true), say R ) 0.05. If
the p-value is larger than the chosen false-positive rate, the
null hypothesis is not rejected, and the prey protein is deemed
‘uniform’. If the p-value is smaller, the null hypothesis may be
rejected, and the prey protein may be regarded as ‘nonuni-
form’. Because many LRTs are performed simultaneously when
evaluating an affinity isolation experiment, a greater number
of prey may be identified as “nonuniform” by chance than
called for by the chosen false-positive rate.23 To reduce this
incidence, we control this false discovery rate using a method
by Benjamini and Hochberg24 (see Supporting Information:
Controlling the rate of false-positive LR tests).

Bayes’ Odds of a Prey-Bait Interaction. If a prey does
interact with a given bait, let the likelihood of a positive
observation be a binomial distribution with parameter â. If a
prey does not interact with a given bait, let the likelihood of a
positive observation be a binomial distribution with parameter
θ. The parameters â and θ are the true-positive and false-
positive rates, respectively, of an affinity isolation assay for a
given bait-prey pair.

Suppose there is knowledge prior to the experiment about
whether a prey-bait association exists; this prior knowledge
may be used in a Bayes’ Rule application in a manner similar
to Gilchrist et al.16 Suppose the prior belief that prey i is asso-
ciated with bait j is the probability πij. Then, the prior belief that
prey i is not associated with bait j is the probability 1 - πij.

By Bayes’ Rule, the Bayes’ Odds that prey i is associated with
bait j is

where Sij is the number of observances of prey i in nj replicate
affinity isolations of bait j as recorded in the prey-by-bait
frequency matrix.

The Bayes’ Odds (Pij) quantifies the posterior confidence that
prey i is associated with bait j. The Bayes’ Odds here differs
from the Bayesian probability of association proposed by
Gilchrist et al.16 in that the parameters âij and θij may vary from
prey-to-prey and bait-to-bait. These parameters may vary from
prey-to-prey because one prey is more easily observed by LC-
MS/MS than another. These parameters may vary from bait-
to-bait because of analytical differences such as the difference
of the affinity tag on function, associations of different bait

proteins, or differences in sample concentrations submitted for
LC-MS/MS. We attempt to exploit our more intimate knowl-
edge of and involvement in the design and execution of an
affinity isolation assay in hopes of improving inferences about
probabilities of association under these conditions.

Estimating the Bayes’ Odds Parameters. Consider the prior
belief πij that prey i interacts with a randomly chosen bait j.
Suppose the proteome is thought to have N proteins, and each
of these proteins are thought to bind uniquely with only one
other protein. If a protein is chosen at random from the N, the
probability that the next randomly chosen protein will bind to
it was 1/(N - 1). Therefore, the prior belief that two proteins
associate with each other is small; the estimated prior prob-
ability used for the Bayes’ Odds was π̂ij ) 1/(N - 1).

For each prey, an algorithm finds the largest difference
between the estimated prey true-positive (â̂) and false-positive
(θ̂) rates (it is assumed that â > θ ). The algorithm assumes
that the observed frequencies across the baits for a given prey
can be segregated into two classes: low frequencies resulting
from no association between some baits and the prey, and high
frequencies resulting from associations between some baits and
the prey. Because values of â̂ ) 1 and θ̂ ) 0 will result in
unintuitive values of the Bayes’ Odds (e.g., θ̂ ) 0 can result in
Bayes’ Odds of one), the estimates are calculated using a
Bayesian-based adjustment. The adjustment uses the fact that
a binomial likelihood for observing S successes in n trials,
combined with a beta prior distribution, Beta(γ1, γ2), yields a
beta posterior distribution Beta(S + γ1, n - S + γ2), which has
as its expected value

The adjusted parameter estimates will take this form using γ1

) γ2 ) 0.25.
For a particular prey protein, or row in the prey-by-bait

frequency matrix, the adjusted observed bait proportions are
ordered from smallest to largest (p̂(1)

/ e p̂(2)
/ e ... e p̂(B)

/ ), where

The ordered proportions p̂(j)
/ are divided into two groups, {p̂(1)

/ ,
..., p̂(j)

/ } and {p̂(j+1)
/ , ..., p̂(B)

/ }, from which θ is estimated with the
data of the lower group and â is estimated with the data of the
upper group. This is done for j ) 1, ..., B - 1. For example, for
j ) 1, θ̂(1) ) p̂(1)

/ and

For the kth cut point, the estimates are

and

The parameter estimates of θ and â for a particular prey are θ̂k

and â̂k that have the largest difference between them (see
Supporting Information: Estimating the Bayes’ Odds param-
eters).

Pij ) (1 +
(1 - πij)θij

Sij(1 - θij)
nj-Sij

πijâij
Sij(1 - âij)

nj-Sij )-1

S + γ1

n + γ1 + γ2

p̂(j)
/ )

S(j) + γ1

n(j) + γ1 + γ2

â̂(1) )
S(2) + ... + S(B) + γ1

n(2) + ... + n(B) + γ1 + γ2

θ̂(k) )
S(1) + ... + S(k) + γ1

n(1) + ... + n(k) + γ1 + γ2

â̂(k) )
S(k+1) + ... + S(B) + γ1

n(k+1) + ... + n(B) + γ1 + γ2
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This estimation algorithm is also applied to each bait protein
or column in the prey-by-bait frequency matrix. Here, the
adjusted observed prey proportions are ordered from smallest
to largest, and repeatedly divided into two groups. In this case,
the θ̂k and â̂k that have the largest difference between them
are the estimates of θ and â for a particular bait. These
estimates, along with the results from the likelihood ratio
testing, are used to calculate the Bayes’ Odds for each bait-
prey pair.

For a prey in the “nonuniform” class, its prey-specific
parameter estimates θ̂ and â̂ are used to calculate the Bayes’
Odds between that prey and each bait. For a “uniform” prey,
the prey’s estimated row proportion p̂k becomes θ̂ and is
combined with each bait’s â̂ to estimate a particular bait-prey
pair’s Bayes’ Odds.

A Screen for Ubiquitous Interactors. A ubiquitous prey
protein is one that interacts with many of the baits. A general
formulation of a measure of ubiquity involves the prey’s Bayes’
Odds

where f(x) is an increasing function that maps the interval [0,
1] into [0, 1]. The measure is large (near 1) if the prey has large
Bayes’ Odds for most of the baits considered and is small (near
0) if most of the Bayes’ Odds are small.

Various choices of f(x) are possible. For example, let f(x) )
0 for x < a, and f(x) ) 1 for x g a. Then, for the given prey, Ui

represents the fraction of baits that have Bayes’ Odds greater
than a. As another example, let

with user-defined parameters a > 0 and c > 0. This f(x)
produces an “S” curve; its steepness is controlled by a (bigger
is steeper), while its position is controlled by c (a small value
is to the left, a big value is to the right). Reasonable values are
a ) c ) 6.

Interpretation of Ui depends on the number of baits, B, and
their relationship. For example, if most or all of the baits in an
analysis belong to a complex, then it would be expected that if
a prey associates with one, it should associate with many of
the baits. On the other hand, if the baits are fairly “indepen-
dent,” then the ubiquity measure has greater meaning. For
some experimenters, the product of B and Ui, approximately
the number of baits with high Bayes’ Odds, may be more
informative.

A Java/R Implementation. We have developed a self-
installing, user-friendly implementation of this LRT-Bayes’
algorithm. This statware (Bayesian Estimator of Protein-
Protein Association Probabilities, or BEPro3) is an open-source,
open-development coding in R (R Foundation for Statistical
Computing, Vienna, Austria), a well-established statistical
programming language, wrapped in a user interface based on
Java (Sun Microsystems, Inc., Sunnyvale, CA). This allows users
to know exactly the implemented statistical operations and
facilitates modification or extension to improve the algorithm.
The self-install package includes a tutorial featuring the
discussed example and documentation. This statware can be
freely obtained and used by Windows, Mac, and Linux users
alike (http://www.pnl.gov/statistics/).

Illustrating the LRT-Bayes’ Algorithm: An Example Affinity
Isolation Experiment. Four model protein complexes that are
conserved among multiple bacterial species and have been
well-studied in other organisms were chosen to test subnetwork
identification using an endogenous isolation method in R.
palustris (see Supplementary Table 4 in Supporting Informa-
tion). They are DNA-dependent RNA polymerase,25 ATP syn-
thase,26 the RNA degradosome,27 and DNA-dependent DNA
polymerase III.28 Candidate bait proteins were chosen from
orthologues of known subnetwork members from E. coli that
have also been reported in a large-scale affinity/mass spec-
trometry study.7 The E. coli results were obtained from an
organism for which the affinity-tagged proteins can be intro-
duced into the chromosome;7 in the present study, reagent-
tagged proteins were expressed episomally from an introduced
plasmid.

Ideally, the affinity isolation procedure would yield a sample
containing a purified mixture of the proteins from a complex
in which the bait protein participates as a protomer. However,
protein-protein interactions exhibit a wide variety of physical
and chemical characteristics that complicate the isolation of
pure, intact complexes. Combined with uncertainties in the
detection method, results of protein-protein interaction ex-
periments are known to be fairly noisy, with significant false-
positive and false-negative rates. Therefore, the expected
outcome of a real experiment is the detection of the bait
protein, some proteins that are authentic interactors with the
bait, and some proteins that are not authentic interactors with
the bait; missing from the result may be some proteins with
which the bait interacts in vivo. For the four model complexes
studied here, one expects each affinity isolation assay to identify
one or more of the protein components expected to be
associated with that complex, based on literature reports from
other bacterial species.

Results and Discussion

The example endogenous affinity isolation experiment in-
volved 75 LC-MS/MS injections spanning from 2 to 10
replicates of 16 bait proteins with 9 baits having 4 replicates
and 4 baits with 5 or more replicates. The prey-by-bait
frequency matrix contained 200 prey; 43 prey were observed
in all but one injection, and 106 were observed in 5 or fewer
injections. In total, 110 prey were tagged “nonuniform,” of
which 102 prey were observed with only a few baits, while the
8 others were observed with all but a few baits. Of the 90
“uniform” prey, 89 were observed 10 or fewer times randomly
across injections, with 1 observed randomly 66 times across
injections.

The two panels of Figure 1 summarize the results of the LRT-
Bayes’ Odds analysis of the four model complexes for the
example 16 bait, 200 prey, 75 LC-MS/MS injection experiment.
Panel A shows the distribution of 3104 prey-bait protein Bayes’
Odds for prey that are not known members of a complex
targeted by the 16 chosen baits; Supplementary Table 5 in
Supporting Information lists the corresponding bait-prey pairs
for which the LRT-Bayes’ Odds is larger than or equal to 0.5.
Panel B shows the distribution of 96 prey-bait protein Bayes’
Odds for prey proteins that are known members of a targeted
complex; Supplementary Table 6 in Supporting Information
lists the bait-prey pairs summarized by panel B. The Supple-
mentary Spreadsheet Example_RPal.xls in Supporting Informa-
tion contains the prey-by-bait matrix and the results from the

Ui )
1

B ∑
j)1

B

f(Pij) (4)

f(x) ) (1 + c(1 - x
x )a)-1

(5)
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LRT-Bayes’ Odds analysis. The example analysis also includes
results from the Gilchrist et al. algorithm.16

From literature mining and previous affinity isolation experi-
ments, the prey-bait pairs can be classified as members or
non-members of a complex. Interactions defined as “known”
were chosen from gene annotation and literature evidence (see
Supplementary Table 4 in Supporting Information). These
included any interactions, within a single complex, among
components of the 4 model complexes mentioned above: for
RNA polymerase, the core components (R, â, â′, ω subunits)
and several sigma factors (σ70, σ54, σ32, σE, σFecI, and an ECF-
type sigma factor, RPA4225); for ATP synthase, the cytosolic
components (R, ε, â, γ, δ subunits) and membrane components
(A, B, B′, C, I subunits); for DNA polymerase III, the R, â, ε, τ +
γ, δ, δ′, ø subunits; and for the degradosome, pnp, rne, two
homologues of rhlB (RPA3670 and RPA2477), a homologue to
srmB (RPA2478), dead, and eno. Interactions between proteins
not in this list, or between proteins in this list that are from
different complexes, were defined as “unknown.” While not
perfect, this classification provided a useful reference point for
evaluating the results of the algorithm.

The statistical sensitivity and specificity of the LRT-Bayes’
Odds association classification can be judged using the Bayes’
Odds calculations. Sensitivity is the proportion of prey-bait
pairs where the pairs are known to be members of one of the
complexes targeted, and the Bayes’ Odds suggest that they are
in fact known members of one of the targeted complexes.
Specificity is the proportion of prey-bait pairs that are not
members of the complex, and the Bayes’ Odds reflect that they
are not members. To judge the sensitivity and specificity of
this prey-bait affinity isolation assay, consider a Bayes’ Odds
< 0.5 as suggesting that there is not an association between a
prey-bait pair, whereas a Bayes’ Odds g 0.5 suggests an
association between a prey-bait pair. Panel A in Figure 1
represents those prey-bait pairs that are not members of a
complex. The prey-bait pairs that have Bayes’ Odds < 0.5
represent the LRT-Bayes’ Odds specificity, or the proportion
of prey-bait pairs that are not known from the literature to
associate that are identified as such by the Bayes’ Odds. The
specificity for the LRT-Bayes’ Odds is approximately 0.95. Panel
B in Figure 1 represents those prey-bait pairs that are members
of a complex. The prey-bait pairs that have Bayes’ Odds g 0.5

in panel B represent the sensitivity of the LRT-Bayes’ Odds.
This affinity isolation experiment has a sensitivity of ap-
proximately 0.5.

The classification of members or non-members of a complex
is done using previous experiments and literature. When the
Bayes’ Odds critical value of 0.5 is used, an assessment can be
made about the validity of this classification. Whereas the
specificity of the LRT-Bayes’ Odds was assessed in panel A of
Figure 1 using the prey-bait pairs with Bayes’ Odds smaller
than 0.5, the histogram also suggests that, 95% of the time, the
classification is correctly identifying non-members, or that 5%
of the time the classification of non-members is incorrect.
These 5% of cases with Bayes’ Odds g 0.5 need to be
scrutinized more closely as to their interactor relationship with
the baits. Of the 153 interactions in Supplementary Table 5 in
Supporting Information, 62 involve preys that associate with a
large fraction of the baits used in this study (Ui > 0.35 for these
preys). Aside from these suspect interactions, the other cases
could represent novel interactions, could help identify prob-
lems with the experimental assay, or could be a result of the
relatively small size of the experimental data set examined (see
Supplementary Table 5 in Supporting Information). Panel B
of Figure 1 suggests that about 50% of the prey-bait pairs with
Bayes’ Odds < 0.5 classified as members of a complex may
require further investigation. Bait-prey pairs with low Bayes’
Odds in panel B of Figure 1 include interactions between
proteins that, while members of the same complex, would not
be expected to interact, such as different sigma factors of RNA
polymerase (see Supplementary Table 6 in Supporting Infor-
mation).

The classification of members or non-members of prey-bait
pairs to a complex from literature is of varying degrees of
quality. A prey may have been assigned to the non-member
class because there was no literature indicating it belonged to
the network member class. The LRT-Bayes’ Odds classification
depends upon the specificity and sensitivity of the endogenous
affinity isolation assay. For example, water-insoluble proteins
would not be detected no matter their network membership
classification. The LRT-Bayes’ Odds classification tool appears
to exhibit high specificity and acceptable sensitivity. Prey-bait
pairs with large Bayes’ Odds scores are most likely interactors,
whereas prey-bait pairs with small Bayes’ Odds are most likely

Figure 1. LRT-Bayes’ Odds sensitivity and specificity. Empirical distributions of Bayes’ Odds for prey proteins that are not known
components of a complex targeted by the 16 chosen baits (A) and for those preys that are known members of a targeted complex (B).
As expected, 97% (3104/3200) of all prey-bait associations fall in the “not known components” category given the design of the
affinity isolation assay and experiment. Assuming the preliminary assessment of complex membership is true, the specificity of the
LRT-Bayes’ Odds classifier (using a Bayes’ Odds cutoff of 0.5) is about 95% as displayed in panel A with a sensitivity of about 50% as
shown in panel B. Believing the Bayes’ Odds classification, 165 prey-bait pairs in the “not known components” category with high
Bayes’ Odds deserve further investigation as potential protein interactors. The 48 pairs with low Bayes’ Odds in the “known components”
category may provide guidance to improving the assay.
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not interactors, though this inference is not strong. The LRT-
Bayes’ classifier may provide useful information when vetting
a prior classification of prey-bait protein interactors.

The histograms for unknown and known complex members
for the “nonuniform” and “uniform” likelihood ratio categories
were similar, implying that the sensitivity and specificity of the
LRT-Bayes’ Odds are similar. The three components of the
“core” RNA polymerase enzyme that were expressed as baits
(rpoA, rpoB, and rpoC) yielded nonuniform interactions with
high Bayes’ Odds for all four core components (the three tagged
proteins and rnpO), as well as the major sigma factor (σ70). Two
tagged core components also yielded high Bayes’ Odds for
interaction with the heat-shock sigma factor (σ32). The two
sigma factors, σ32 and σE, that were successfully expressed as
baits yielded high Bayes’ Odds for some, but not all, core
components. The core components and sigma factors that were
detected as preys were also scored as “nonuniform” interactors.
In this case, high Bayes’ Odds scores and nonuniform prey calls
were obtained for known components of the RNA polymerase
complex (see Supporting Information: Results and Discussion).

In addition to core components and sigma factors, other
proteins were identified as interacting with the affinity-tagged
baits. Heat shock proteins dnaK (RPA0333) and grpE (RPA0331)
were identified when σ32 served as bait; these two proteins have
also been observed in association with σ32 in E. coli.29 Other
interactors identified with high scores include RPA0060, a 14.5
kDa acidic conserved protein of unknown function. RPA0060
provides an example of the promise of the algorithm for
identifying potentially novel protein-protein interactions. In
subsequent experiments, RPA0060 was employed as the affin-
ity-tagged bait, based on detection of RPA0060 as a prey for
rpoA. In these experiments, rpoA was detected as a prey for
the RPA0060 bait in each of two LC-MS/MS measurements
performed on two separate cultures (data not shown). This
“reciprocal” result strengthens the inference that RPA0060 is
associated with the RNA polymerase complex. A similar protein
(YacL) was identified as interacting with RNA polymerase in E.
coli.7 A third group of interacting proteins are also identified
as nonuniform interactors with high Bayes’ Odds but appear
to have no known biological role in the complex under study:
RPA4642 (fructose bisphospate aldolase) and RPA2953 (Hu DNA
binding protein). These proteins exhibit relatively high values
of Ui (0.70 and 0.93, respectively) and can thus be identified
as likely artifactual preys that are not selectively isolated with
baits in the RNA polymerase complex.

When members of the F1 portion of the ATP synthase
complex were used as baits, nonuniform interactions were
identified for all of the soluble F1 head piece members. For
example, when RPA0177, the γ-subunit, was used as bait,
nonuniform interactions for all members of the soluble F1
portion of ATP synthase were identified with high Bayes’ Odds,
including R, â, δ, and ε subunits. Additionally a number of
interactions with proteins not previously reported in the
literature were identified with high Bayes’ Odds. As noted above
for RNA polymerase, a number of these interactions involved
prey proteins with relatively high values of Ui and are thus not
likely to be authentic.

Inferences about protein-protein interactions that are de-
rived from affinity-isolation experiments can be strengthened
by performing “reciprocal” experiments, in which a prey
protein identified in one experiment is employed as the bait
in a subsequent experiment. Table 1 illustrates the LRT-Bayes’
Odds scores for several protein-protein interactions from RNA

polymerase and ATP synthase that were identified in reciprocal
experiments. All of these interactions exhibit high Bayes’ Odds
for both bait-prey orientations, providing increased confidence
that these measurements identified authentic biological protein-
protein interactions.

DNA polymerase III was chosen as a model for “low-
abundance” species; native DNA polymerases are generally
present in very low quantities in bacterial cells (10-20 copies
per cell in E. coli30). Methods based on affinity isolation
combined with mass spectrometric identification for detecting
protein-protein interactions are known to be biased against
low-abundance proteins.9 In this study, when putative mem-
bers of the DNA polymerase III complex or the RNA degrado-
some complex were used as baits, no obvious biologically
relevant interactions were identified by manual inspection of
the interaction data which was supported by the lack of
nonuniform interactions identified with high Bayes’ Odds
scores.

Conclusions

The LRT-Bayes’ method is an informative tool for appraising
observations of protein association from protein affinity isola-
tion LC-MS/MS experiments. The algorithm employs an
objective statistical procedure, in contrast to often subjective,
ad hoc appraisal methods. The example LRT-Bayes’ analysis
produced biologically sensible results that evoke more confi-
dence than ad hoc analyses. Monte Carlo simulation proved a
useful and doable alternative to check model assumptions,
estimate model parameters, and judge significance. The LRT-
based classification facilitated disparate follow-on analyses
through segregation of the prey proteins.

Generally, prey proteins with small Bayes’ Odds have rela-
tively low frequencies, and for those in the “uniform” class,
these frequencies are homogeneously distributed across all
baits and are inferred to be false-positive observations. Prey
with large Bayes’ Odds are likely to be truly associated with
one or more bait proteins or are ubiquitous proteins that
associate non-discriminantly with the bait or affinity resin in
the collection. If baits from a sufficient variety of complexes
are included in the experimental design, these ubiquitous
proteins can be flagged based on a weighted and normalized
sum of their Bayes’ Odds for interactions with all baits.

The reliance on large sample statistical theory is common
but often does not apply. Powerful computing options are
available to simulate the distributions associated with the data.
Here, MC simulations were useful in examining the statistical
assumptions, in generating data to find approximate p-values,
and in determining which conservative bound on the row
proportion should be used. For this LRT application, a com-
prehensive MC simulation showed that an LRT p-value, a

Table 1. Reciprocally Tagged Protein LRT-Bayes’ Odds

LRT-Bayes' Odds

complex protein 1 protein 2

protein 1 bait/

protein 2 prey

protein 2 bait/

protein 1 prey

RNA polymerase RPA3226 RPA0367 0.984 1.000
RPA3226 RPA3267 1.000 1.000
RPA3226 RPA3268 0.990 1.000
RPA3267 RPA0367 0.984 1.000
RPA3267 RPA3268 0.990 1.000

ATP synthase RPA0175 RPA0177 1.000 0.87
RPA0176 RPA0177 1.000 0.976
RPA0176 RPA0178 1.000 1.000
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measure of LRT statistical significance, could deviate signifi-
cantly from the true p-values when estimated by the common
appeal to the ø2 distribution. A conservative p-value estimate
from a second simulation of the actual LRT statistics is more
acceptable for affinity isolation studies with small numbers of
replicates per bait.
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