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a b s t r a c t

Quality affinity isolation experiments are necessary to identify valid protein–protein
interactions. Biological error, processing error, and random variability can reduce the
quality of an experiment, and thus hinder the identification of protein interaction pairs.
Appraising affinity isolation assay quality is essential to inferring protein associations.
An important step of the assay is the mass spectrometric identification of proteins. To
evaluate this step, a known mixture of proteins is processed through a mass spectrometer
as a quality control mixture. If the mass spectrometer yields unexpected results, the
process is currently qualitatively evaluated, tuned, and reset. Statistical quality control
(SQC) procedures, including the use of cumulative sum, the individual measurement, and
moving range charts are implemented to analyze the stability of the mass spectrometric
analysis. The SQC measures presented can assist in establishing preliminary control limits
to identify an out-of-control process and investigate assignable causes for shifts in the
process mean in real time.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

One approach for identification of valid protein–protein interactions necessitates the use of high-quality affinity isolation
experiments. Currently, the majority of effort has focused on the production of large quantities of data from these
experiments. If, however, contamination is introduced into the experimental process, then the data are unreliable and
possibly misleading. Specifically, inferred interactions between protein pairs may not be statistically valid.

In this paper, a statistical quality control (SQC) methodology adapted for use in the mass spectrometric identification
of proteins will be presented. This step is an important component of one common type of affinity isolation
experiments (Berggard et al., 2007), as well as other proteomics-relatedmeasurements (Smith et al., 2007). These statistical
methods are well-suited for this type of experimental data, and will assist in the establishment of preliminary control limits
that are used to signal an out-of-control process. Once these limits are established, assignable causes for shifts in the process
mean can be found in real time.

2. Background

For the experimental process examined in this paper, one goal is to achieve a state of statistical process control.
Researchers aim to manage and establish control of the process by analyzing a ‘‘known’’ protein sample with the liquid
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Table 1
Peptide and protein labels from the standard mixture of proteins

Peptide/Protein

Label Name

ADH2_YEAST Yeast alcohol dehydrogenase II
ADH1_YEAST Yeast alcohol dehydrogenase I
HBA_BOVIN Bovine hemoglobin α

HBB_BOVIN Bovine hemoglobin β

ALBU_BOVIN Bovine serum albumin
MYG_HORSE Horse myoglobin
LYC_CHICK Chicken egg lysozyme C
CAH2_BOVIN Bovine Carbonic anhydrase 2

chromatograph/mass spectrometer (LC-MS) system. This known sample is a standard mixture containing fixed quantities
of certain peptides run through the mass spectrometer along with experimental runs. Specifically, data were collected from
LC-MSanalyses of this standardmixture as part of a ‘‘pipeline’’ formeasurement of protein–protein interactions inR. palustris
at Oak Ridge National Laboratory from July, 2004 to May, 2007. Each sample of the quality control standard is a mixture
containing the peptides resulting from tryptic digestion of eight proteins which are listed (with corresponding abbreviated
labels) in Table 1 (Strader et al., 2006). These standard samples are to be processed through the mass spectrometer both
before and after a batch of experimental samples through LC-MS system. Because a standard sample is formulated as a
known mixture, the results from the mass spectrometer analysis should be similar from one standard sample to another.
If, however, the mass spectrometer yields results that are inconsistent or unusual with respect to the components of the
standard mixture, then the process is evaluated, tuned, and reset if necessary.

Several aspects of the data from LC-MS analyses of the standard can be evaluated to determine whether the operating
performance of the LC-MS system is acceptable performance. Reproducibility of LC retention times of peaks for a small set
of selected peptides provides evidence that the liquid chromatography components of the system are functioning properly.
Shifted retention times or missing peaks can indicate hardware problems with the LC system (worn parts, leaks, etc.) as
well as incorrectly preparedmobile phase solutions. Peaks with widths that are wider than expected can indicate a need for
replacement of the LC column. Identification of fewer peptides than expected can indicate poor performance of the mass
spectrometer itself, suggesting the need for calibration, tuning, cleaning, replacement of detector elements, or other similar
maintenance procedures. This paper focuses on monitoring the number of identified peptides in a standard mixture as an
indicator of the performance of the LC-MS system.

Statistical quality control (SQC) procedures applied to the affinity isolation experiment datawill establish a quantitatively
rigorous approach to the identification of an out-of-control process. The implementation of the procedures will give
researchers an objective methodology for monitoring the process. The SQC procedures presented are also capable of
detecting small shifts in the process, a practical consideration for analyzing data from LC-MS analyses.

3. Methods

For any quantitative process response of interest, there are two sources of variation to be monitored. First, there is the
random variability inherent to the process which is represented by σ 2, the process variance. Second, there is variability in
the process mean µ which can result from short-term or instantaneous changes in the mean, as well as from long-term
trends or gradual changes in the mean. Ideally, σ 2 will be acceptably small and µ will be equal to an aim value, denoted µ0.

To analyze the stability of the affinity isolation experiment process in terms of these two sources of variation, SQC
charting techniques will be used. Specifically, the cumulative sum (cusum) chart, the individual measurements (I) chart,
and the moving range (MR) chart will be implemented. A cusum chart is a plot of the cumulative deviations of a sequence
of observations from an aim value, usually the process mean. The individual measurements or I-chart is a sequence plot of
the measurements against the order of data acquisition. Both the cusum chart and I-chart are used to monitor the process
meanµ. The cusum is designed to detect relatively small shifts inµ faster than the I-chart while the I-chart will detect large
shifts in µ faster than the cusum chart. The moving range (MR) chart is used to monitor σ 2, the random variability inherent
to the process (Montgomery, 2005).

If a cusum or I-chart indicates an ‘‘out-of-control’’ signal, then we conclude a shift in µ has occurred. If a MR-chart
indicates an ‘‘out-of-control’’ signal, then we conclude a shift in σ 2 has occurred. Until an out-of-control signal occurs, the
process is considered to be in a state of statistical control. For the affinity isolation experiments, cusum charts and I-charts
will be used to monitor the mean of the peptide counts collected from the processed standard protein mixtures. When the
process is ‘‘in-control’’, the differences between the individual observations and some aim peptide count will be distributed
with expectation zero (Montgomery, 2005). Thus, when the process is in-control, the points on the cusum chart should be
close to zero and the points on the I-chart should be randomly distributed about the aim. Although beyond the scope of the
present paper, additional aspects of the data measurement from LC-MS analyses (retention times, for example) could be
included in future implementations of the statistical analysis of performance.
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If the process variance σ 2 is unknown or cannot be specified by the researcher for any experimental result of interest,
then it must be estimated from the data. The sample variance s2 is not a good estimator of the σ 2 for an in-control process
because it reflects not only inherent process variability, but also incorporates measurement error and long-term variability
due to assignable causes. Thus, s2, on average, over-estimates σ 2. Instead of s2, the mean squared successive difference
(mssd) estimator σ̂ 2 is the most commonly-used estimator of σ 2, and is the default method used for the cusum procedure
in SAS (SAS Institute Inc., 1995). The mssd estimate of σ 2 is

σ̂ 2
=

1
2(N − 1)

N−1∑
i=1

(yi+1 − yi)2, (1)

where yi is the ith observation and N is the number of individual observations (SAS Institute Inc., 1995). The
mean squared successive difference is, in general, a good estimate of the process variability and measurement error
because the effect of long-term variability due to assignable causes is minimized by using only successive observations
(von Neumann et al., 1941).

Because individual measurements (peptide counts) are recorded for a given protein, the I-chart (individual
measurements chart) and the MR-chart (moving range chart) are useful for displaying the two components of process
variability: variability in the process mean µ and the random process variability σ 2, respectively.

A moving range is computed by finding the absolute difference between two consecutive observations. The ith moving
range is given by MRi = |yi+1 − yi|. The estimator of the process variability in the moving range chart is σ̂ =

MR
d2

where

MR =

(∑N−1
i=1 MRi

)
/(N − 1) is the average of the N − 1 consecutive moving ranges in N observations and d2 ≈ 1.128

is the mean of the distribution of the relative range (ymax − ymin)/σ under normality assumptions with a sample size of
two (Montgomery, 2005).

The standard 6σ range between a lower control limit (LCL) and an upper control limit (UCL) will be adopted for both the
I andMR control charts. Then LCL and UCL for theMR-chart are defined to be

LCL = MR
(
1 −

3d3
d2

)
and UCL = MR

(
1 +

3d3
d2

)
(2)

where d3 ≈ 0.853 is the standard deviation of the distribution of the relative range. If the LCL for the MR chart is < 0 then
it is set to 0.

For the I-chart, the LCL and UCL for individual measurements are

LCL = y − 3
MR
d2

and UCL = y + 3
MR
d2

. (3)

To establish a basis fromwhich a more refined set of aim values can be developed, this exploratory data analysis will use
samplemeans of peptide counts as preliminary aim values. Thus, for any peptide, the average difference between individual
observations and the sample mean will be zero. Therefore, we can use cusum charts to detect any unusual patterns or
systematic deviations from randomness for any particular peptide count (e.g., when the process mean for a peptide count
has shifted away from the preliminary aim value). In addition, once a shift in a mean has been detected, a cusum-based
estimate of the current mean can be found.

For a particular sample of the standardmixture (identified by the job identification number), the recordedmeasurement
is a count of the number of peptides identified from the mass spectrometry data. Suppose a total of N standard samples
is processed. Let yi be the total number of peptides observed for the ith job identification number. The ith cusum (Si) is
defined to be the sum of the deviations of the first i observations from the process aim value (Hawkins and Olwell, 1998;
Montgomery, 2005). Initially, using the sample mean y as the preliminary aim, the ith cusum is

Si =

i∑
j=1

(yj − y). (4)

Let max(a, b) be the maximum of a and b. The ith cusum for detecting an upward shift (S+

i ) for the ith job identification
number is defined as

S+

i = max(0, yi − K+
+ S+

i−1) (5)

where K+
= kσ is the reference value of the ‘‘upward’’ cusum and σ 2 is the process variance. The value of k is chosen

relative to the size of the shift to be detected and S+

0 is the head start value for the upward shift (usually set to 0). Similarly,
the ith cusum for detecting a downward shift (S−

i ) for the ith job identification number is

S−

i = max(0, −K−
− yi + S−

i−1) (6)

where K−
= kσ is the reference value of the ‘‘downward’’ cusum (Lucas, 1985; Hawkins and Olwell, 1998; Montgomery,

2005). S−

0 is the head start value for the downward shift, and is usually set to 0.
The cusum parameter values K+ and K− are, respectively, values above and below which the counted data cusums are

not designed to react. An out-of-control signal occurs on the ith samplewhen either S+

i or S−

i reaches or exceeds the decision
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Fig. 1. Cumulative sum, individual observations, andmoving range control charts for the sum of peptide counts that occur in a particular job identification
number.

interval value, H = hσ . The goal is choose h and k to optimize the in-control average run length (ARL), denoted ARL0, to be
sufficiently large when the process mean is on-aim and sufficiently small when the process mean shifts ±∆ units from the
on-aimmean value for some pre-specified value ∆. Hawkins and Olwell (1998) provide guidance for the choices of h, k, and
ARL. In addition, Montgomery (2005) explains that in order to detect a one standard deviation shift in the process, the use
of h = 4 or h = 5 and k = 0.5 provides a cusum with an appropriately long ARL.

In addition to considering the cusum and I and MR charts, investigators also might want to consider ‘runs rules’. These
rules, or tests, detect particular non-random patterns in the data and not just signals caused by an individual outlying value.
In the I chart, zones are defined to assist in the identification of these non-random patterns. Zones C, B, and A are defined,
respectively, to be the areas on the control chart that are (i) within ±1σ of the aim, (ii) between −2σ and − 1σ or between
1σ and 2σ from the aim, and (iii) between −3σ and − 2σ or between 2σ and 3σ from the aim. As an example of a runs
rule, investigators might want to be warned if seven consecutive observations fall outside of zone C on the I chart. If σ is
estimated, then the zones are formed using the estimate MR

d2
.

4. Results

From July, 2004 to May, 2007, data were collected at the Oak Ridge National Laboratory from each sample of the quality
control standard protein mixture (Strader et al., 2006). Each standard sample has a unique job identification number that is
linked to the mass spectrometer analysis number. The job identification numbers are ordered according to their acquisition
start time (i.e., the time that the sample entered the mass spectrometer for analysis). A particular job identification number
has an associated list of peptides that are identified with a particular protein, and the number of peptides per protein is tab-
ulated. Using Sequest (Eng et al., 1994; Eng and Yates, 1999), peptides are identified via automated cross-correlation-based
matching of experimental tandemmass spectra and predicted tandemmass spectra of the expected peptides in the sample.
Default threshold values for Sequest results were applied, with XCorr ≥ 1.8 for singly-charged peptides, XCorr ≥ 2.5 for
doubly charged peptides, and XCorr ≥ 3.5 for triply-charged peptides, and DeltCN ≥ 0.08 (Tabb et al., 2002).
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Fig. 2. Upper and lower one-sided cumulative sum control charts for the sumof peptide counts from the standard proteinmixture that occur in a particular
job identification number.

Although each protein can be analyzed separately, the sum of peptide counts for each job identification number is
analyzed in the following example. Figs. 1 and 2 contain the Si cusum chart, the I andMR-charts, and the upper S+

i and lower
S−

i one-sided cusum control charts for the sum of peptide counts across job identification numbers. In Fig. 1, the pattern for
the mean for the sum of peptide counts is quite similar to the pattern that was observed for many of the individual peptides
(not shown).

The sample mean (and subsequent aim value) of the 120 standard protein mixture samples from this analysis is 73.93
peptides. The mass spectrometer column used to separate the components of the digested mixture is labeled in the
segmented bar above each of the plots. The cusum, upper cusum, and lower cusum charts show that the process mean
is operating below the aim value for most of the first half of the standard protein mixture samples. The process appears to
be operating around the aim (73.93 peptides) from about the 9th to the 12th sample and again around the 47th to the 61st
sample (Fig. 1). The peptide counts associatedwith these latter samplesweremeasured using themass spectrometer column
C18_7. Upon a change in the mass spectrometer column to C18_8, the mean of the process shifts above the aim value. The
process operates above the aim value until columns C18_12 and C18_13 are used in the mass spectrometer and the process
appears to stabilize. With a column change to column C18_14, the process shifts to operate below the aim value. The linear
trends in the cusum plot indicate that most of the shifts in the process mean that occur in this analysis are constant shifts.
Non-linear trends indicate dynamic changes have occurred in the process mean.

Out-of-control signals are observed in the I andMR charts. An out-of-control signal will be observed when the individual
measurements are outside of three standard deviations from the mean. In the I-chart, job identification numbers that occur
outside of three standard deviations from the mean are: 6, 7, 31, 43, 47, 80, 88, 89, and 113. Moving range values that
are outside the upper control limit occur for the job identification numbers 9, 10, 43, 48, 80, and 81. While out-of-control
signals are evident in the I andMR control charts, the control limits for the moving range (LCL = 0, UCL = 29.7) and for the
individual measurements (LCL = 49.8, UCL = 98.1) are calculated using all of the observations. However, in the presence
of outliers, it is common to revise the trial control limits by recalculating a revised mssd estimate of σ 2 after the removal of
outliers.

For data from LC-MS analyses such as those described in this paper, the estimated rate of incorrect peptide identification
is less than 5%. These incorrect identifications are based on Sequest searches using a ‘‘decoy’’ database containing both
normal and amino acid sequence-reversed versions of all R. palustris proteins (data not shown); an identification event for
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Fig. 3. Individual observations and moving range charts with special runs tests flagged for the sum of peptide counts that occur in a particular job
identification number. The indices in the figure state which runs rule has been violated.

a ‘‘reverse’’ peptide is considered incorrect (Elias and Gygi, 2007). For the present paper, Sequest searches were performed
using a protein database containing amino acid sequences for the proteins in the standard mixture, as well as for more than
4800 R. palustris proteins. The standard samples that are the subject of the present paper do not contain any R. palustris
proteins. Any peptides identified in the standard protein mixture as arising from R. palustris proteins could be considered
either incorrect identifications, or due to instrument carryover from previous samples.

In the one hundred twenty standard protein mixture samples through the mass spectrometer, only eight had no R.
palustris identifications. The other runs had at least one R. palustris identification. One of the standard protein mixture
samples considered to be out-of-control using the I and MR charts (job identification number 43) had no R. palustris
identifications. Twenty-six standard protein mixture samples had more than five R. palustris peptides identifications, only
three of which corresponded to out-of-control signals (job identification numbers 6, 88, and 89) on the I and MR charts.
These results indicate that standard protein mixture samples registering out-of-control signals did not coincide with the
observation of higher false-positive peptide identification rates.

Fig. 3 illustrates the use of runs rule tests for the sumof peptide counts that occur in a particular job identification number.
The violation of a runs rule is flagged by an index in the figure. Specifically, in the I-chart, if one peptide count sum occurs
beyond Zone A then a ‘1’ occurs in the figure. A ‘2’ occurs if seven consecutive points occur in Zone C or beyond on one side of
the aim value line. A ‘5’ occurs if two out of three consecutive points are in Zone A or beyond. A ‘6’ occurswhen four out of five
sequential points are in Zone B or beyond. Additional runs rules are available in SAS (SAS Institute Inc., 2000–2004, 1995).

5. Conclusion

Statistical quality control procedures applied to affinity isolation experiment data assist the researchers in establishing a
quantitatively rigorous approach to identify an out-of-control process. The cusum, I , and MR control charts presented here
can assist researchers to monitor the stability of the LC-MS stage of the process. Currently, control limits are not defined
for the mass spectrometry component of the affinity isolation experiment. Therefore, trial control limits can be established
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from the data for these three control charts. When one or more of these control charts indicate an out-of-control signal,
then the analysts will need to investigate assignable causes for shifts in the process mean or variability. The instability of
the process could be due to many things: a column change in the mass spectrometer, a new batch of the standard protein
mixture, or a different mass spectrometer operator.

While the demonstration presented here was performed retrospectively, it would be desirable to implement SQC in a
time-frame that would provide feedback for quickly identifying and correcting problems with the LC-MS instrumentation.
Currently, peptide identifications are performed via Sequest in a batch mode after LC-MS data acquisition has been
completed for a set of standard and experimental samples. These peptide identifications constitute the input data for the
SQC analysis presented in this paper, thus precluding a ‘‘real time’’ result. Oneway to shorten the time required for feedback
would be to perform the Sequest analysis on raw LC-MS data from standard samples immediately after acquisition. The
delay currently imposed by the Sequest identification step could possibly be eliminated by designing a SQC method based
on an attribute of the LC-MS raw data, such as areas under selected chromatographic peaks corresponding to peptides in
the standard mixture.

After the cause for the shift in the process mean or variance has been identified and the magnitude of the shift is
estimated (Montgomery, 2005), the appropriate adjustment to the process should be made. In addition, researchers will
need to specify the in-control process average run length (ARL0) before a false out-of-control signal occurs and the out-of-
control process average run length (ARL1) before a true out-of-control signal occurs, so that the cusum parameter values h
and k can be established.

Acknowledgements

This researchwas funded by the Genomics: GTL program and the U.S. Department of Energy Office of Advanced Scientific
Computing Research under contract 47901, and by the Office of Biological and Environmental Research under contracts
41966 and 43930. Pacific Northwest National Laboratory is a multi-program national laboratory operated by Battelle
Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Oak Ridge National Laboratory
is managed and operated by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

We wish to thank Trish K. Lankford at Oak Ridge National Laboratory for her expert technical assistance.

References

Berggard, T., Linse, S., James, P., 2007. Methods for the detection and analysis of protein–protein interactions. Proteomics 7, 2833–2842.
Elias, J.E., Gygi, S.P., 2007. Target-decoy search strategy for increased confidence in large-scale protein identifications bymass spectrometry. NatureMethods

4, 207–214.
Eng, J., Yates, J., 1999. Sequest. http://fields.scripps.edu/sequest/start.html.
Eng, J.K., McCormack, A.L., Yates III, J.R., 1994. An approach to correlate tandem mass spectral data of peptides with amino acide sequences in a protein

database. Journal of the American Society for Mass Spectrometry 5 (11), 976–989.
Hawkins, D.M., Olwell, D.H., 1998. Cumulative Sum Charts and Charting for Quality Iimprovement. Springer-Verlag New York, Inc., New York, NY.
Lucas, J.M., 1985. Counted data cusum’s. Technometrics 27 (2), 129–144.
Montgomery, D.C., 2005. Introduction to Statistical Quality Control, fifth ed. John Wiley & Sons, Inc.
SAS Institute Inc., 1995. SAS/QC r©Software: Usage and Reference, Version 6, Volumes 1 and 2, first ed. SAS Institute Inc., Cary, NC.
SAS Institute Inc., 2000–2004. SAS 9.1.3 Help and Documentation. SAS Institute Inc., Cary, NC.
Smith, J.C., Lamber, J.P., Elisma, F., Figeys, D., 2007. Proteomics in 2005/2006: Developments, applications and challenges. Analytical Chemistry 79,

4325–4343.
Strader, M.B., Tabb, D.L., Hervey, W.J., Pan, C., Hurst, G.B., 2006. Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in

organic–aqueous solven systems. Analytical Chemistry 78 (1), 125–134.
Tabb, D.L.,McDonald,W.H., Yates,W.H., 2002. DTASelect and contrast: Tools for assembling and comparing protein identifications fromshotgunproteomics.

Journal of Proteome Research 1, 21–26.
von Neumann, J., Kent, R.H., Bellinson, H.R., Hart, B.I., 1941. The mean square successive difference. The Annals of Mathematical Statistics 12 (2), 153–162.

Please cite this article in press as: Sharp, J.L., et al., Statistically appraising process quality of affinity isolation experiments. Computational Statistics and
Data Analysis (2008), doi:10.1016/j.csda.2008.05.011

http://fields.scripps.edu/sequest/start.html

	Statistically appraising process quality of affinity isolation experiments
	Introduction
	Background
	Methods
	Results
	Conclusion
	Acknowledgements
	References


