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DBDigger: Reorganized Proteomic Database
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Database search identification algorithms, such as Se-
quest and Mascot, constitute powerful enablers for pro-
teomic tandem mass spectrometry. We introduce DBDig-
ger, an algorithm that reorganizes the database identifi-
cation process to remove a problematic bottleneck. Typi-
cally such algorithms determine which candidate se-
quences can be compared to each spectrum. Instead,
DBDigger determines which spectra can be compared to
each candidate sequence, enabling the software to gener-
ate candidate sequences only once for each HPLC separa-
tion rather than for each spectrum. This reorganization
also reduces the number of times a spectrum must be
predicted for a particular candidate sequence and charge
state. As a result, DBDigger can accelerate some database
searches by more than an order of magnitude. In addition,
the software offers features to reduce the performance
degradation introduced by posttranslational modification
(PTM) searching. DBDigger allows researchers to specify
the sequence context in which each PTM is possible. In
the case of CNBr digests, for example, modified methio-
nine residues can be limited to occur only at the C-termini
of peptides. Use of “context-dependent” PTM searching
reduces the performance penalty relative to traditional
PTM searching. We characterize the performance possible
with DBDigger, showcasing MASPIC, a new statistical
scorer. We describe the implementation of these innova-
tions in the hope that other researchers will employ them
for rapid and highly flexible proteomic database search.

Tandem mass spectrometry is an essential technology for
protein identification from complex mixtures. Samples ranging
from electrophoretic gel spots to complete proteomes can be
analyzed.1? Typically, sample proteins are digested enzymatically,
and the resulting peptides are separated by liquid chromatography
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en route to the mass spectrometer. While peptides elute from the
column, the mass spectrometer repeatedly cycles between “sur-
vey” scans and “product ion” scans. The survey scans enumerate
the peptide ions eluting at a particular moment in time. The mass
spectrometer isolates the peptide ions with the most intense
signals and subjects them to collision-induced dissociation.> The
product ion scans catalog the fragments produced by the breakage
of the peptide ions to produce tandem mass spectra. Once all
spectra have been collected, database identification algorithms
such as Sequest* or Mascot® identify the peptide represented by
each tandem mass spectrum, and the protein content of the sample
can be assessed by assembling confident peptide identifications
that come from the same proteins.

The database identification algorithm was introduced with the
publication of Sequest in 1994.* This type of software reads a
tandem mass spectrum and identifies the most likely peptide
sequence to have produced the spectrum from a provided protein
sequence database. Three main processes are involved: candidate
sequence generation, theoretical spectrum prediction, and scoring.
The algorithm enumerates candidate sequences by finding por-
tions of database protein sequences that represent peptides with
masses matching that observed for a particular spectrum. Theo-
retical spectra for these candidate sequences are typically pro-
duced by predicting the N-terminal b series ions and C-terminal
y series ions® that would result if such a peptide fragmented at
its amide bonds; a y5 ion, for example, contains the C-terminal
five amino acids, while a y4 ion contains the C-terminal four amino
acids of a peptide. Each of these theoretical spectra is compared
to the observed spectrum, and the best matches are reported with
their associated scores for each spectrum.

Database identification algorithms have evolved since Sequest’s
initial publication. The first substantial change came in 1995, when
Sequest was modified to handle posttranslational modification
(PTM) searches.” To hunt for PTMs with Sequest, a user specifies
the change in mass associated with the modified form of a
particular residue or set of residues (such as a gain of 16 Da for

(3) Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. J. Mass Spectrom.
2000, 35, 1399—1406.

(4) Eng, J. K; McCormack, A. L,; Yates, J. R., Il. J. Am. Soc. Mass Spectrom.
1994, 5, 976—989.

(5) Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S. Electrophoresis
1999, 20, 3551—-3567.

(6) Roepstorff, P.; Fohlman, J. Biomed. Mass Spectrom. 1984, 11, 601.

(7) Eng, J. K; McCormack, A. L; Yates, J. R, Il J. Am. Soc. Mass Spectrom.
1995, 67, 1426—1436.

10.1021/ac0487000 CCC: $30.25 © 2005 American Chemical Society
Published on Web 03/05/2005



oxidation of Met residues). When the algorithm generates
candidate sequences, it considers either of two masses possible
for the specified residues. The next substantial change in these
algorithms was heralded by the 1999 introduction of Mascot.?
Instead of following Sequest’s lead in producing an identification
score in an arbitrary range, Mascot introduced the idea of scoring
identifications by their probabilities of being false positives. Other
algorithms have adopted this model as well.3~10 Users of Sequest
have responded by creating systems to calculate similar prob-
abilities from the collection of subscores produced by the
software.!12 A third shift in database identification software came
with the publication of the TANDEM algorithm in 2003.1314 In
this article, Craig and Beavis argued that database identification
should be an iterative process in which rapid searches (such as
those limited to tryptic peptides) can be used to limit the search
space for complex searches (such as those incorporating multiple
PTMs or sequence variants). A final way in which the database
search field has changed is that accessory software for enabling
proteomics has developed considerably. Tools exist to cull low-
quality spectra,’>16 assess charge states from spectra prior to
identification,!”'8 parallelize database search over multiple comput-
ers,!8 and perform data mining of identifications.!%? Taken as a
whole, the informatics behind proteomics has matured consider-
ably in the past decade.

Several problems have not been addressed by these develop-
ments. The first is that the numbers of spectra produced in mass
spectrometry facilities are growing at an increasing rate.l¥ Data-
base searches as currently run identify each spectrum indepen-
dently, and so processing time scales linearly with the number of
spectra. An identification strategy that decouples the processing
time from the number of spectra would be beneficial for improving
identification throughput. A second problem involves searches for
multiple PTMs. Because most existing strategies limit the
numbers of PTMs that can be sought in any one search, some
users have adopted strategies where multiple searches are
conducted and then collated;?! search engines that can handle
substantial numbers of PTMs simultaneously would be more
efficient for finding PTMs. Problems of identification sensitivity
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and accuracy continue to be issues of fundamental importance
for proteomics.

In this article, we characterize DBDigger, a database search
algorithm designed to improve the flexibility of PTM searching
and to identify large sets of spectra more efficiently. DBDigger
can target particular PTMs with greater specificity and so reduce
the time required to identify them. DBDigger generates candidate
sequences only once from the database, decreasing the time
penalty for multiple PTM searching. The algorithm is designed
for single-pass, rapid scoring of potential matches. The software
can identify peptides from multiple isotopic distributions in a single
pass. To showcase DBDigger, we present results from MASPIC,2
a new statistical scorer for comparing peaks between a theoretical
spectrum and an observed spectrum. DBDigger’s modular frame-
work supports research on improved theoretical spectrum predic-
tion and spectral comparison algorithms. These capabilities
position DBDigger as a model database search algorithm.

EXPERIMENTAL SECTION

All proteins, salts, buffers, dithiothreitol (DTT), and guanidine
hydrochloride were obtained from Sigma Chemical Co. (St. Louis,
MO). Sequencing-grade trypsin was purchased from Promega
(Madison, WI). Formic acid was obtained from EM Science
(affiliate of Merck KgaA, Darmstadt, Germany). HPLC-grade
acetonitrile and water were used for all LC/MS/MS analyses
(Burdick and Jackson, Muskegon, MI). Ultrapure 18 MQ water
used for sample buffers was obtained from a Millipore Milli-Q
system (Bedford, MA). Fused silica was purchased from Poly-
micro Technologies (Phoenix, AZ).

Preparation of Protein Standard Mixture Training and
Test Sets. Protein standard mixture training and test sets were
generated from six proteins: chicken egg lysozyme, bovine serum
albumin, bovine carbonic anhydrase, horse myoglobin, bovine
hemoglobin, and yeast alcohol dehydrogenase I. The proteins
were mixed so that an equal weight of each was present.
Hemoglobin included both o and 5 polypeptides, and a quantity
of yeast alcohol dehydrogenase II was found in the dehydrogenase
I for a total of eight polypeptides. The proteins were digested by
different protocols for the two samples. Trypsin was added to an
estimated 1:5 enzyme-to-substrate ratio (w/w). The training set
was digested with trypsin in 80% acetonitrile for 1 h at 37 °C. The
test set was digested with trypsin overnight at 37 °C in 50 mM
Tris-HCI, 10 mM CaCl, (pH 7.6). After digestion, disulfide bonds
between peptides were reduced by adding DTT to a final
concentration of 20 mM and incubating for 1 h at 37 °C.

For both training and test mixtures, 1D LC/MS/MS experi-
ments were performed with a Famos/Switchos/UltiMate HPLC
System (LC Packings, a division of Dionex, San Francisco, CA)
coupled to an LCQ-DECA XP Plus quadrupole ion trap mass
spectrometer (Thermo Finnigan, San Jose, CA) equipped with a
nanospray source. A 300 um i.d. x 5 mm nano Cyg precolumn
(LC Packings) preconcentrated and cleaned the samples on-line
with the other columns. The flow rate for reversed-phase liquid
chromatography was 0.15 uL/min with a 160-min linear gradient
from 100% solvent A (95% HyO/5% ACN/0.5% formic acid) to 100%
solvent B (30% H,0/70% ACN/0.5% formic acid). The Vydac
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218MS5.07515 Cyg column (75 um i.d. x 15 cm, 300-A pore size,
5-um particles) was connected to the nanospray source with 20-
um-i.d. fused-silica tubing. The LCQ was operated in the data-
dependent mode with dynamic exclusion enabled,? where the four
most abundant peaks in the 400—2000 m/z range were subjected
to MS/MS analysis.

Preparation of Rhodopseudomonas palustris Riboso-
mal Proteins. 70S ribosomes from R. palustris were purified and
fractionated using a high salt sucrose cushion and sucrose density
fractionation as previously described.?* Acid-extracted® proteins
were denatured and reduced in 6 M guanidine hydrochloride, 50
mM Tris-HCI (pH 7.6), with 10 mM DTT at 60 °C for 45 min.
Next, the proteins were digested with trypsin overnight at 37 °C.
Remaining disulfide bonds were reduced with 10 mM DTT at 60
°C for 45 min. The resulting peptide mixtures were desalted using
Cyg reversed-phase extraction (Sep-Pak, Waters, Milford, MA).
These mixtures were separated in 2D LC/MS/MS experiments
using a Famos/Switchos/UltiMate 2D HPLC system (LC Pack-
ings) coupled to an LCQ-DECA-XP Plus ion trap MS equipped
with a ThermoFinnigan nanospray source. Strong cation exchange
was conducted in a 500 gm i.d. x 15 mm column (LC Packings).
Peptides eluted into an LC Packings reversed-phase precolumn
(300 ym id. x 5 mm, 300-A PepMap). The desalted peptides
flowed into a nanoscale Vydac 218MS5.07515 Cyg analytical column
(75 ym i.d. x 15 cm, 300-A pore size, 5>-um particles). A 150-min
gradient from solvent A (95% H,0/5% ACN/0.1% formic acid) to
solvent B (30% H,0/70% ACN/0.1% formic acid) ran at 200 nL/
min to elute peptides into the mass spectrometer. The LCQ was
run in the data-dependent mode with dynamic exclusion enabled.?
For these experiments, 10—30 ug of starting material was injected
by the autosampler followed by 14 separate salt injections at
ammonium acetate concentrations of 0, 25, 50, 100, 200, 400, 600,
and 800 mM, 1 M, and five injections of 2 M.

DBDigger Software. A database search identifier was created
in the C++ programming language and named “DBDigger”. The
code has been compiled and run under Linux for x86, Alpha, and
PowerPC architectures as well as Microsoft Windows 2000 and
XP. The software is modular, allowing alternative systems for
theoretical spectrum prediction and spectral comparison to be
evaluated. The algorithm begins by loading the search configu-
ration and spectra to be identified into memory. The software then
processes the specified protein sequence database, iterating
through all possible candidate sequences for each protein se-
quence entry. Theoretical spectra are predicted for candidate
sequences with masses that match observed spectra, and these
theoretical spectra are compared to the observed spectra by the
specified scoring algorithm. Each of these steps is described in
greater detail below.

Several steps are necessary before identification can begin.
DBDigger is configured from a text file (an example of which
appears in Supporting Information). This file allows researchers
to identify peptides of multiple isotopic contributions in a single
pass. The elemental composition for each amino acid residue
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Figure 1. DBDigger reorganizes database identification so that

candidate sequences are generated only once for each collection of
spectra rather than once for each spectrum.

ore candidates?

follows; the software automatically determines the mass for each
residue based on the specified isotopic distributions. The elemen-
tal compositions of posttranslationally modified residues are also
specified in the configuration file along with allowable neighboring
residues (with “—” indicating the peptide terminus). Researchers
can specify rules defining each permissible type of protein
cleavage (such as tryptic cuts after Lys and Arg residues, but not
before Pro). In addition, the user can select how many conforming
cleavages are required for each peptide, where “0” declares an
unconstrained search, “1” requires at least one end of each peptide
to conform to cleavage rules, and “2” requires both ends of each
peptide to match a cleavage rule. Since extremely low mass and
high mass peptides are unlikely to be useful for protein identifica-
tion, researchers can stipulate a peptide mass minimum and
maximum for the search. In addition, users can indicate that
database protein sequences may include residues that are clipped
off (such as initial methionines), allowing initial peptides from
these proteins to begin at internal residues. Once the configuration
is set, the software reads all spectra from a liquid chromatography
run into memory (typically this will be on the order of 2000 spectra
for an LCQ-series instrument). The spectra are sorted by precur-
sor mass and are organized both as a linked list and as a balanced
binary search tree for rapid retrieval. With these steps complete,
the search can begin.

In DBDigger, candidate sequence generation is performed only
once for the entire set of spectra rather than once for each
spectrum (see Figure 1). Each candidate sequence is initiated at
a particular position in the database sequence, extended by the
succeeding residues in the sequence, compared to spectra from
precursors within an acceptable mass range (usually 3 Da) of its
calculated mass after each extension, and eliminated when its
calculated mass exceeds that of the most massive precursor
peptide for which a spectrum has been produced. As the algorithm
passes through the sequence for a particular protein, these
operations are managed for the set of candidate sequences
initiated at prior positions. If posttranslationally modified forms
of particular residues have been configured, the algorithm creates
multiple copies of each candidate sequence in memory and
extends one copy with each of the possible forms of the current
residue. The number of modified residues for each candidate



Table 1. DBDigger Generation of a Candidate Sequences from Lysozyme?

sequence

WWCNDGRTPGSR
NTDGSTDYGILQINSRWWCNDGRTPGSR
NLCNIPCSALLSSDITASVNCAK
TPGSRNLCNIPCSALLSSDITASVNCAK
NLCNIPCSALLSSDITASVNCAKK
TPGSRNLCNIPCSALLSSDITASVNCAK
IVSDGNGMNAWVAWR
IVSDGNGM@NAWVAWR
KIVSDGNGMNAWVAWR
KIVSDGNGM@NAWVAWR

mass fate
1435.57 no comparisons possible
3171.39 compared to one +3
2338.74 compared to seven +2s and four +3s
2837.27 no comparisons possible
2466.91 compared to two +2s and two +3s
2965.45 no comparisons possible
1676.90 compared to four +2s and two +3s
1692.90 compared to two +2s and four +3s
1805.07 compared to two +2s and four +3s
1821.07 compared to four +2s and three +3s

¢ When DBDigger generates a candidate sequence from the sequence database, several outcomes are possible. First, there may be no spectra
from precursors near the candidate sequence’s mass, and so no comparisons are possible for this candidate. Some candidate sequences can be
compared to spectra from precursors of a single charge state. In these cases, a single theoretical spectrum is produced and compared to the
experimental spectra. Other candidate sequences can be compared to experimental spectra of multiple charge states, and for these candidates,
multiple theoretical spectra are produced and compared appropriately. The table shows consecutively produced candidate sequences from residues
62—112 of the chicken egg lysozyme sequence and their resulting comparisons. “M@” indicates an oxidized methionine residue.

sequence is tracked, and candidates are limited to contain a
maximum number of modifications (usually three).

After generating a particular candidate sequence, the algorithm
searches the spectra in memory to find those resulting from
fragmentation of peptides within 3 Da of the candidate sequence,
a process that is made efficient by the binary search tree
organization of the spectra. The software creates a theoretical
spectrum for the candidate sequence for each precursor charge
state at which it will be compared (see Table 1). When more
complex systems for predicting theoretical spectra are employed,
this organization helps to minimize the impact of this process on
performance. The modular structure of the program allows
multiple systems for generating spectra from candidate sequences.
For the purposes of this report, DBDigger was configured to use
a simple spectrum generator. This system predicts only singly
charged b and y fragment ions for spectra from singly and doubly
charged precursors. Both doubly and singly charged fragments
are predicted for spectra from triply charged precursors. After
each theoretical spectrum is produced, it is simplified by merging
peaks that are too similar in 7/2z value to be resolved by the mass
analyzer. Single peaks replace these peak pairs at intermediate
m/z values.

DBDigger was designed to support alternative systems to
compare theoretical and experimental spectra. We present results
for MASPIC, a novel statistical scorer that achieves significant
accuracy and speed improvements over Sequest’s cross correlation
algorithm. For a complete technical description and justification
of this scoring function, look for an upcoming article by Narasim-
han et al.22 The scorer makes use of extensive statistics generated
during preprocessing for each spectrum to determine which
candidate sequence matches are least likely to have resulted by
random chance (see Figures 2 and 3). These statistics make use
of three spectral principles:

1. Spectral Density Variation. Typically, existing statistical
scorers assume that peaks are distributed randomly across the
m/z range. MASPIC segregates each spectrum into a number of
zones equal to the precursor ion charge state. This separates areas
of high peak density from more sparsely occupied regions.

2. Intensity Classification of Fragment Ions. MASPIC
stratifies ions into intensity classes for each spectral zone. The
software accepts the smallest number of peaks into the most

intense class, while larger numbers of peaks are accepted into
less intense classes. As a result, it is less likely that a randomly
matching peak be of a more intense class. Peaks with insignificant
intensities are removed from consideration.

3. Mass Accuracy of Matching Peaks. The scorer allows
for three possible classes of m/z error for each peak matching
between theoretical and experimental spectra: a complete miss,
a marginal hit, or a close hit. The algorithm computes the prob-
ability of randomly matching a peak of each intensity class with
acceptable m/z error and with very low m/z error (see Figure 3).

This statistical evaluation of each spectrum is used to deter-
mine the probability that the overall match for each theoretical
spectrum has occurred by random chance. The reported scores
are higher for matches that are less likely to be random matches.

In addition to primary scores, DBDigger provides a useful
secondary measure of each match. The eight most intense peaks
are each assigned a power of 2; the most intense peak is assigned
the weight 128, the second most intense is assigned 64, etc. The
identification’s secondary score is the sum of these weights for
peaks that are matched between the observed and theoretical
spectrum. For example, an identification that matches the most
intense, second most intense, and fourth most intense experi-
mental peaks would receive a score of 128 + 64 + 16 = 208 out
of a maximum of 255. At a glance, experienced users of the
software can discern which of a spectrum’s most intense eight
peaks are matched by a particular identification.

DBDigger has been designed as part of a pipeline of mass
spectrometry tools. Tandem mass spectra are extracted from
instrument capture files into MS2 format unified spectrum files.2
Spectra from precursors near the same m/z that contain similar
fragment ions are grouped and replaced by spectra that average
over the similar spectra.?’28 The charge states of precursors for
each spectrum are inferred by another algorithm under develop-
ment.? Finally DBDigger reads in spectra from the processed
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Anal. Chem. 2003, 75, 2470—2477.

(29) Razumovskaya, J.; Fridman, T.; Day, R.; Uberbacher, E.; VerBerkmoes, N.;
Gorin, A. Proc. 52nd Am. Soc. Mass Spectrom. Conf. 2004, MPE 074.

Analytical Chemistry, Vol. 77, No. 8, April 15, 2005 2467



Zone 1

w7

Zone 2

v
¥3 y11
Class 1 ¥ 12

b6 Yo Class 1

Class 2 ‘ ‘ b8 3
¥2 " | ) }n % ; hrﬂ - Class 2

. | : . 7 W b0 L I 7T .

L "fﬁmmm&zm L?"’ 1L Em U ez 7 i

Figure 2. Spectrum representing the peptide MPCTEDYLSLILNR from bovine serum albumin in its doubly charged form. During preprocessing,
the MASPIC scorer?? separates each doubly charged peptide’s tandem mass spectrum into two zones. The algorithm estimates the number of
fragment ions expected to fall within each zone on the basis of the peptide’s mass and charge state, and it uses this estimate to set an intensity
cutoff for each zone that retains a number of observed peaks in that zone that is a multiple of the number of ions estimated to occur within it.
The remaining peaks are stratified into classes on the basis of intensity, with each successive class holding twice as many peaks. This raw
spectrum contains 423 peaks in the first zone and 292 in the second. Intensity filtering removed all but a fraction of these peaks from consideration
in each zone. The remaining peaks were segregated into three classes on the basis of intensity.

MS2 and outputs its identifications as SQT-format unified identi-
fication files,%6 a format that enables the filtering and assembly of
identifications through the DTASelect algorithm.! When a cluster
of computers is available for identification, DBDigger separates
the protein sequence database so that an equal part of it is
processed by each member of the cluster. The same spectra are
processed on each computer, but against different parts of the
database. If the search is run on three computers, the first will
match spectra against the first of each three sequence database
entries, the second will draw its candidates from the second of
each three protein sequences, and the third will compute
candidates from the third of each three sequences. After these
database searches are complete, the identifications from each
computer are merged together to build a final identification file.
This differs from the standard parallelization technique in which
spectra are parceled out to individual computers for identification
against the entire database.

Algorithm Configurations and Database Origins. Sequest
and DBDigger were tested in both trypsin-specific and uncon-
strained modes. For tryptic peptide searches, cleavage was
specified to take place after Lys or Arg but not before Pro. Sequest
allows peptides to initiate at the first residue of the database
sequence or at trypsin cleavage sites. DBDigger was configured
to permit peptides to initiate at either the first residue or the
second of the database sequence as well as the trypsin cleavage
sites; this allows for more convenient searching of protein
databases where N-terminal Met removal is anticipated.

The primary sequence database used for searches in this article
consisted of several elements. The 4833 ORF's of the R. palustris
proteome® were search targets for the ribosome search but were
distractors during the protein standard mixture search. Contami-
nating proteins were added to this database, including 10 immu-
noglobulins, 12 proteases, and 14 keratin sequences. Finally, eight
polypeptide sequences were added for the proteins in the standard
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mixture (alcohol dehydrogenase II was added to the database
because this protein was sometimes observed in conjunction with
the alcohol dehydrogenase I). The total count of proteins in this
database was 4877, yielding a 0.16% chance of randomly hitting 1
of the 8 standard proteins.

The ribosomal sample?* was previously analyzed by Sequest.”
At first, no PTMs were included in the search configuration, and
317 proteins were identified by at least one high-scoring peptide;
some contaminant proteins cosedimented with the 70S ribosomes
during purification. These sequences were concatenated into a
subset database that was used for the PTM search. In this study,
the same subset database was used for the DBDigger PTM
analysis. The subset database contains all of R. palustris’ ribosomal
proteins, but an identification has only a 17% chance of hitting a
ribosomal protein randomly.

All database searches were run on a computer system
incorporating an AMD Athlon 2500+ “Barton” processor. The
computer featured 512 MB of RAM with a front side bus of 333
MHz. TurboSequest v27 and DBDigger were tested in the
Microsoft Windows XP home operating system. Database indexing
was not employed. Sequest allowed candidate peptides to contain
zero or one missed tryptic cleavage sites in the tryptic peptide
search. Identifications from the standard mixtures were consid-
ered to be true matches if their best-ranked sequences were part
of the database sequences for one of the true proteins; this list
included the eight polypeptides of the standard mixture, trypsin,
or one of the keratins. A script was created in the R statistical
environment3! to automate finding the lowest score thresholds
for identifications for peptides of each charge state that would

(30) Larimer, F. W.; Chain, P.; Hauser, L.; Lamerdin, J.; Malfatti, S.; Do, L.; Land,
M. L,; Pelletier, D. A.; Beatty, J. T.; Lang, A. S.; Tabita, F. R.; Gibson, J. L,;
Hanson, T. E.; Bobst, C.; Torres, J. L.; Peres, C.; Harrison, F. H.; Gibson,
J.; Harwood, C. S. Nat. Biotechnol. 2004, 22, 55—61.

(31) Hornik, K. The R FAQ. http://www.ci.tuwien.ac.at/ hornik/R/ISBN:3-
901167—51-X.



Class Zone 1 Zone 2
hi-fi  lo-fi |hi-fi lo-fi
1 04% 0.6% | 0.3% 0.4%
2 0.8% 1.1% | 0.6% 0.8%
3 23% 3.5% | 1.7% 2.6%

Score distribution for example +2 spectrum

0.10
|

Density

0.00

T © @
\ T \ T

0 20 40 60
Score

Figure 3. The MASPIC scorer attempts to match each peak from
a theoretical spectrum to a peak in the experimental spectrum. During
preprocessing, the algorithm determines the probability of randomly
matching a peak of each intensity class for each zone at high fidelity
(within 0.2 m/z) and low fidelity (more than 0.2 m/z but less than 0.5
mlz). These probabilities, shown in the table for the spectrum in Figure
2, are used as a lookup table to assess the significance of individual
peak matches for a particular candidate sequence. The algorithm
combines the probabilities into a score that is higher for matches that
are unlikely to have occurred by random chance. A semitryptic
identification of this spectrum generated 16 458 candidate sequences,
almost all of which scored less than 20. The open circle, at a score
of 26.63, represents the most highly scoring false match. The closed
circle, at a score of 76.59, represents the single true match. A
sequence receives a higher score when it matches to larger numbers
of peaks, when many of those peaks are of the most intense class,
and when it matches peaks at stringent m/z tolerance.

yield a mix of at least 19 true identifications for each false
identification. Additional R scripts produced the included receiver
operator characteristic (ROC) plots*2 and candidate sequence
analyses. DTASelect!® employed the thresholds reported by the
R scripts in conjunction with the settings -a false -0 -d 0 - -DB to
produce the peptide counts displayed in the tables. In brief, these
settings rejected identifications for which sequence ambiguity was
possible (for example, Leu for Ile substitutions), eliminated
degenerate protein identifications, removed the requirement that
the best matching sequence score 8% better than the second best
matching sequence, and produced files ready for import into a
spreadsheet or database.

RESULTS AND DISCUSSION
In this study, three samples were used to characterize the

performance of DBDigger. For training the scoring algorithm used
in DBDigger, we employed spectra from a high-specificity trypsin
digest of a mixture of six standard proteins. After algorithm
development was complete, we digested the same mixture of
proteins with a more traditional trypsin digestion to produce the

(32) Baker, S. G. J. Natl. Canc. Inst. 2003, 95, 511-515.

test set. Finally, we employed spectra produced during a recent
analysis of the R. palustris ribosome?! to validate the software’s
PTM identification capabilities.

Protein Standard Mixture Training Set. A six-protein
mixture was digested with trypsin under conditions that were seen
to reduce nonspecific cleavage relative to standard overnight
digests. A 2-h gradient of this training set produced 2401 tandem
mass spectra. An assessment of spectral similarity followed by
replacement of similarity sets with representative spectra reduced
this count to 1638 spectra. Of these, 367 were assigned +1
precursor charge states. Of the remaining 1271 multiply charged
spectra, 894 were assigned +2 precursor charge states, and 615
were assigned +3 precursor charge states.

The initial comparison between Sequest and DBDigger in-
volved a search for tryptic peptides only. The Sequest search took
13 min, while the DBDigger search, employing MASPIC as the
scorer, lasted only 23 s (see Table 2), though the algorithms
processed the same numbers of spectra and produced the same
numbers of identifications. Sequest compared an average of 547
candidate sequences to each spectrum, while DBDigger compared
an average of 941. The primary scores for each algorithm were
evaluated to determine the lowest cutoff scores in each precursor
charge state for which at least 95% of the passing identifications
were to proteins known to be in the mixtures. These thresholds
(see Table 2) were used in DTASelect reports for the identifica-
tions. At 95% confidence, Sequest was able to identify 225 spectra
while MASPIC identified 266, an 18% increase. Of the 270 spectra
identified at this confidence by either algorithm, 4 were identified
only by Sequest and 45 were identified only by DBDigger with
the MASPIC scorer.

Next, the algorithms were compared for nonspecific searching.
The Sequest search time doubled to 27 min, while DBDigger’s
search time increased to more than 32 min. Thresholds for 95%
confidence were automatically assessed for the identifications.
Because more candidate sequences were compared to each
spectrum, the scores associated with the most distracting false
answers increased, reducing the discrimination of the identifica-
tions. At the 95% confidence level, Sequest identified 205 spectra,
while MASPIC identified 234, a 14% increase.

The time to process an unconstrained search rather than a
tryptic search doubles for Sequest but increases by 85-fold for
DBDigger with MASPIC as the scorer. The increased search time
results from the much larger set of candidate sequences. Sequest
employs two-stage scoring; all candidate sequences are evaluated
by the preliminary scorer, but only the top 500 candidates are
processed by the cross-correlation engine (see Figure 1). Sequest’s
prescoring is of no utility during database searches generating
500 or fewer candidate sequences per spectrum because every
candidate sequence is subjected to both preliminary scoring and
cross-correlation. Because unconstrained searching increases the
number of candidate sequences by almost 2 orders of magnitude;
however, the time required for prescoring the candidate se-
quences increases dramatically while the time required for cross-
correlation is essentially unchanged. DBDigger processes every
candidate sequence with its scoring function. Although the
MASPIC scorer is much faster than cross-correlation, it is being
employed on ~173 times as many spectra.
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Table 2. Training Set Identifications at 95% Confidence?

95% confidence cutoffs

algorithm tryptic time cand peptide spectral

employed ends (min) seqs IDs IDs plusl plus2 plus3
Sequest 0 27 86295 175 205 2.968 2.485 3.348
Sequest 2 13 547 195 225 1.631 1.932 2.322
DBDigger 0 32:25 86297 211 234 29.31 33.37 44.95
DBDigger 1 6:37 16752 224 250 27.61 29.05 44.27
DBDigger 2 0:23 941 234 266 22.24 23.62 39.24

@ A mixture of known proteins was analyzed by LC/MS/MS, producing 2401 spectra. These were grouped by similarity to reduce duplication,
and likely precursor charge states for each spectrum were inferred. The resulting 1638 spectra were processed by DBDigger and by Sequest in
both tryptic and unconstrained database searches. DBDigger, unlike Sequest, features a semitryptic search option. For each run, the cutoff scores
for spectra of each charge state that produce at least a 19:1 ratio of true to false identifications were automatically determined; this corresponds
to the 95% confidence level for each search. Because some peptides were evidenced by multiple spectra, the number of spectra identified differed
from the number of peptides identified. The greater the average number of candidate sequences compared to each spectrum, the higher the false
positive scores, requiring higher cutoffs for the same confidence.

Table 3. Training Set Identifications with PTMs at 95% Confidence?

95% confidence cutoffs

PTM time cand peptide spectral
set (min) seqs IDs IDs plusl plus2 plus3
no PTMs 0:23 941 234 266 22.24 23.62 39.24
Nterm Acet, M+16 1:13 2530 243 274 22.24 24.41 40.88
Nterm Acet, M+16, Nterm Q-17 1:15 2617 247 277 20.13 25.22 41.72
Nterm Acet, M+16, Any Q-17 2:23 4177 247 276 22.19 26.02 42.42

%To demonstrate the value of context-dependent PTM searching, we used DBDigger to identify peptides with deamidated Gln residues, a
feature know to occur predominantly at N-termini of peptides.. We included two other ubiquitous PTMs: N-terminal acetylation of peptides and
oxidation of Met. Allowing Gln to lose ammonia for any occurrence of the residue required DBDigger to compare an average of 4177 candidate
sequences per spectrum, but limiting these losses to Gln residues at peptide N-termini reduced this average to 2617 candidates and substantially
accelerated the search.

To maximize the identifications achievable from the training
set, DBDigger was configured to conduct tryptic peptide searches
for several PTMs: acetylations at peptide N-termini, oxidations
of Met, and ammonia loss from Gln. Alcohol dehydrogenase I
and carbonic anhydrase II are known to bear acetylations at their
protein N-termini. Oxidation of Met is commonly associated with
sample handling.?® Peptides with Gln at their N-termini can lose
ammonia in a side-chain attack on the peptide terminus.®*
Incorporation of PTMs in searching changes the numbers of
candidate sequences compared to each spectrum and highlights
the importance of the context-dependent PTM searching intro-
duced in DBDigger. The tryptic search with no PTMs examined
an average of 941 candidates per spectrum (see Table 3). When
Met residues were permitted to gain a mass of 16 Da and peptide
N-termini were permitted to be acetylated, the candidate se-
quences climbed to 2530 per spectrum, with 274 spectra identifi-
able at 95% confidence. Two separate searches then examined the
impact of context-dependent PTM searching. The first search
added ammonia loss from Gln as a traditional PTM, while the
second search permitted ammonia loss from Gln only when the
residue was at the N-terminus of the peptide. The second, context-
dependent PTM search resulted in substantially fewer candidates
per spectrum. This search resulted in 5 identifications for peptides
with ammonia-losing Gln at the N-terminus (see Supporting
Information for an example), 10 identifications of oxidized Met
residues, and 3 additional identifications for N-terminally acetylated

(33) Reid, G. E.; Roberts, K. D.; Kapp, E. A.; Simpson, R. J. J. Proteome Res.
2004, 3, 751-759.

(34) Krokhin, O. V.; Ens, W.; Standing, K. G. Rapid Commun. Mass Spectrom.
2003, 17, 2528—34.
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proteins. An additional, internal, peptide was reported as being
N-terminally acetylated, but this would appear to have resulted
from a modified side chain (see Supporting Information). By
reducing the numbers of candidate sequences compared to each
spectrum, specifying required sequence contexts for PTMs can
increase database search speed.

Protein Standard Mixture Test Set. Because MASPIC was
optimized for the training set, a separate sample was used for
validation. The same proteins were digested overnight with
trypsin. Of the initial 2400 spectra, 1903 remained after grouping,
almost 300 more than in the training set. Of the grouped spectra,
284 were found to have resulted from +1 precursors, and of the
remaining spectra, 1293 were assigned as coming from +2
precursors while 705 were assigned as resulting from +3 precur-
sors. Though the test sample incorporated the same proteins, the
use of a different digestion protocol was observed to increase the
number of cleavages after residues other than lysine and arginine,
making this collection of spectra substantially different than the
training set described above.

Table 4 compares DBDigger’s results for this test set against
those of Sequest. Using MASPIC, DBDigger achieved a consider-
able improvement upon Sequest’s identifications in unconstrained
(i.e., nontryptic) database searching, identifying 32% more spectra
at the 95% confidence level. Of the 156 spectra identified by at
least one algorithm, 3 were identified only by Sequest and 40 were
identified only by MASPIC. When the algorithms were configured
to identify only tryptic peptides, they performed similarly, with
the new algorithm identifying only 3% more spectra. The utility
of semitryptic searches, identifying peptides that result from tryptic



Table 4. Test Set Identifications at 95% Confidence?

spectral

95% confidence cutoffs

algorithm tryptic time cand peptide

employed ends (min) seqs IDs IDs plusl plus2 plus3

Sequest 0 35 84850 110 116 2.212 3.147 3.827
Sequest 2 17 458 125 143 1.899 2.029 2.714
DBDigger 0 40:48 84854 145 153 28.66 36.42 48.36

DBDigger 1 8:16 16427 157 166 27.44 31.63 47.04

DBDigger 2 0:32 919 136 148 22.48 25.47 40.60

@ Qvernight trypsin digestion of the same standard proteins, followed by LC/MS/MS, produced 2400 spectra. Similarity grouping and charge-
state inference retained 1903 spectra. Despite the larger number of spectra, fewer peptides were identified by either algorithm than in the training
set. The utility of semitryptic searching for tryptic samples is demonstrated by the 166 spectra identified versus 148 for the tryptic-constrained

search.
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Figure 4. ROC plots demonstrate the improved accuracy available in the MASPIC scorer. The protein standard mixture test set was analyzed
by Sequest and DBDigger in unconstrained (nontryptic) searches. Identifications were separated by the charge state of the precursor ions
because this charge can affect identification effectiveness. A series of cutoff scores were applied to the identifications, and the numbers of true
and false identifications above these thresholds were assessed. The solid lines represent MASPIC's results, and Sequest is shown by the
dotted lines. DBDigger yields a larger number of true identifications with MASPIC at all points shown. The dashed diagonal in each graph

intersects the curves at the 95% confidence level.

cleavages at one end and nonspecific cleavages on the other, is
highlighted by DBDigger’s performance in this mode; 8.5% more
spectra were identified in the semitryptic search than in the
nonspecific search at the 95% confidence level.

ROC curves were constructed for the nonspecific search of

the protein standard mixture test set (see Figure 4). Because the
number of identifiable spectra from this sample is unknown, the
figures show numbers of true and false identifications rather than
displaying sensitivity and specificity. These curves show the
numbers of true and false identifications passing a series of score
thresholds. Each threshold is represented by a point on a curve
for the appropriate algorithm. An ideal scoring function separates
true from false answers perfectly and would rise vertically until
all true answers were included and then make a right angle for
the lower scores of false answers. For one algorithm’s curve to
appear above another implies that the algorithm identifies a larger
number of true identifications for the same number of false
identifications. The curves in Figure 4 demonstrate that MASPIC
exceeds Sequest’s accuracy for spectra from singly, doubly, and
triply charged precursors.

The test sample was used to estimate the effect of PTM
searching on scoring thresholds. When PTMs are incorporated
into a search, the number of candidate sequences compared to
each spectrum can increase substantially, increasing the highest
false score observed for each spectrum. PTMs can potentially
increase the candidate sequences compared more than increasing

sequence database size; database size increases cause a linear
increase in candidate sequences compared, while each PTM added
has a geometric effect on candidate sequences compared. The
test set was subjected to a series of searches incorporating the
following PTMs: N-terminal acetylation, N-terminal Gln deami-
dation, Met oxidation, Thr and Ser dehydration, and Lys and Arg
methylation (see Figure 5). The average number of candidate
sequences varied by 2 orders of magnitude from the search with
no PTMs to the search with all of the above PTMs. Three line
equations were derived from these PTM searches that allow
estimation of 95% confidence thresholds for searches of unknown

mixtures:
y, = 0.788x + 17.667

¥y, = 1.496x + 15.660
y; = 2.201x + 27.815

where y, is a threshold for a particular charge state and x is the
natural logarithm of the average candidate sequences compared
to each spectrum. A line illustrating each of these projected
thresholds is overlayed on the actual thresholds in Figure 5. An
examination of the number of candidate sequences compared to
each spectrum revealed that searches incorporating large numbers
of potential PTMs compare many more candidates to high-mass
peptides than to low-mass peptides (see Figure 6). By projecting
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Figure 5. Sets of PTMs reveal threshold scaling. A series of DBDigger searches with increasing numbers of PTMs indicated the scaling of
MASPIC’s 95% confidence threshold scores in response to the number of candidate sequences evaluated. Each row in the table represents a
different database search with PTMs. The symbols indicate which PTMs were included in each search: a, N-terminal acetylation; Q, N-terminal
GIn deamidation; M, Met oxidation; T, Thr dehydration; S, Ser dehydration; K, Lys methylation; and R, Arg methylation. The average number
of candidate sequences for a search with all of these PTMs is almost 2 orders of magnitude greater than for a search with no PTMs. In the
accompanying graph, triangles represent 95% confidence scores for +3 precursor spectra, while squares represent thresholds for doubly charged
precursors and diamonds represent cutoffs for singly charged precursors.
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Figure 6. Precursor mass versus the natural logarithm of the number of candidate sequences compared to the spectrum. Each dot represents
an identification, with the horizontal position indicating the precursor mass and the vertical position indicating the natural logarithm of the number
of candidate sequences compared to the spectrum. When configured to require candidate sequences to be tryptic, Sequest and DBDigger
show different tendencies as peptide mass increases. Sequest was configured to limit missed tryptic cleavage sites to one, and so more massive
peptides were compared to fewer candidates than less massive peptides. DBDigger does not track missed cleavages. When PTMs are
incorporated, the number of candidate sequences compared increases disproportionately for massive peptides. The title above each plot indicates
which PTMs were permitted in each search (see Figure 5). In the most complex search shown, the most massive peptides are compared to
roughly 70 times as many candidates as the least massive peptides. Because false identification scores increase in response to increased
numbers of candidate sequences, this variation in candidate counts calls into question the common practice of applying a single cutoff score to
all identifications of a particular charge state.

thresholds that reflect the average number of candidate sequences
compared to each spectrum, these line equations aid users to
select score thresholds that are appropriate to the search
conducted. The variation in numbers of candidate sequences,
however, makes it clear that, for aggressive PTM searches, scores
for an individual spectrum should be evaluated in light of the
number of candidate sequences compared.

Many protein sequence databases, especially those for eukary-
otic proteins, contain entries that share common peptide se-
quences. As a result, a particular candidate sequence may repeat
as a search algorithm proceeds through the database. This is most
common for the shortest peptide sequences. DBDigger does not
store a comprehensive list of candidate sequences already
compared to each spectrum, instead storing only the sequences
of the five best matches so far. As a result, DBDigger is unable
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to determine which new candidate sequences may be repeats of
previously examined candidate sequences. While this reduces the
efficiency DBDigger can achieve while searching redundant
databases, it allows DBDigger to separate large databases into
subsections for parallelization.

This parallelization strategy was evaluated with the protein
standard test set. A semitryptic search identifying the full set of
spectra against the entire database took 8:16 (minutes and
seconds) on a single computer. This search was next conducted
in eight separate processes. Each process identified the full set
of spectra against a different eighth of the protein sequences. This
led to some variation in the run times for each process; the
quickest finished the search in 59.5 s, while the slowest search
lasted 67.5 s. This inequity in search times is a factor to consider
in launching such searches on multiple computers. Even though



Table 5. Processing Time Scales in Response to
Spectral Count?

spectra seconds % of % of

searched elapsed spectra time
1903 496 100.0% 100.0%
951 308 50.0% 62.1%
475 200 25.0% 40.3%
237 120 12.5% 24.2%
118 93 6.2% 18.8%
59 45 3.1% 9.1%

%To measure the efficiency achieved by reorganizing database
search, we constructed subsets of several sizes from the test set spectra
Less time is required per identification as the number of spectra
increases.

eight computers are all instructed to start a search simultaneously,
their completion times are likely to vary. In this example, the eight
processes took a total of 8:31 min to run. A separate algorithm
merged these eight result files together in 3 s. The total amount
of processing time used was 8:34 min for an eight-way parallel-
ization, adding an overhead of 18 s to the single process search
time.

The process of scoring matches can be separated from the
processes of reading spectra, generating candidate sequences, and
constructing theoretical spectra by running DBDigger with no
scoring function. Unsurprisingly, the time required for processes
other than scoring also increases when larger numbers of
candidate sequences are to be compared. Three searches without
scoring were conducted with the full set of spectra in the test
sample being compared to the complete database in tryptic,
semitryptic, and unconstrained database searches. The times
required for these searches without scoring were 0:19, 4:25, and
21:46 min, respectively. If these times are compared to those in
Table 4, it becomes plain that processes other than spectral match
scoring can be significant in determining the amount of time
required for identification.

To test the scaling efficiency of DBDigger’s reorganization,
we created spectral subsets of varying sizes and identified them
by semitryptic search (see Table 5). In this test, identifying half
the spectra took 62% as long as identifying all the spectra. As the
number of spectra being identified increases, the effective number
of identifications per second increases. As rapidly scanning linear
ion traps become more common in proteomic laboratoriess, the
number of spectra requiring identification will increase. DBDig-
ger’s organization for database search reduces the computational
requirements for keeping pace with these new instruments.

Ribosomal Posttranslational Modification Search. Spectra
were produced via 2D LC/MS/MS from a sample highly enriched
in the ribosomal proteins of R. palustris and surveyed for protein
content and PTMs.2* Because of limitations in Sequest, multiple
PTM searches were necessary to evaluate this sample for single,
double, and triple methylations of Lys and Arg. DBDigger was
configured to search for a variety of PTMs in a single pass, using
the same ribosomal sequence database subset used in the initial
publication; the search included single, double, and triple meth-
ylations of Lys and Arg, f-methylthiolation of Asp, deamidation
of N-terminal Gln residues, and oxidation of Met residues. The
PTM search against the 317 protein database produced an average
of 32 579 candidate sequences for each spectrum and took 290

min to run on all 14 LC/MS/MS runs, containing a total of 19 026
spectra after spectral similarity grouping. Because a large number
of PTMs were in consideration, the amount of memory required
for the search quintupled with respect to the amount required
for this search without PTMs; the inclusion of many PTMs
geometrically increases the number of candidate sequences that
must be retained simultaneously during candidate sequence
production.

Comparison of PTMs from the initial publication of the
ribosome data and from the DBDigger search is complicated by
several factors. First, the published PTMs were required to be
supported by evidence from two of three possible sources: 1D
LC/FTICR MS of intact proteins, 1D LC/MS/MS of peptides, and
2D LC/MS/MS of peptides. The DBDigger analysis includes only
the 2D LC/MS/MS results. Second, the published analysis
stemmed from a series of unconstrained (nontryptic) Sequest
searches, with each seeking a particular type of PTM. The
DBDigger search included only tryptic peptides, and the single
search encompassed the full set of modifications. The initial
publication enumerated a methylation on RRP-L3, two separate
isoforms of of RRP-L7/L12, an acetylation or trimethylation on
RRP-L11, N-terminal methylations of RRP-L30 and RRP-L33, and
a ff-methylthiolation on RRP-S12.

RRP-L3 was initially found to carry a methylation on K155 or
K158 based on an top-down protein intact mass and a single-
methylation Sequest search. DBDigger identified peptides match-
ing these PTMs, but their scores were insufficient to pass the
95% confidence criterion. Its most confident PTMs were four
spectra identifying a peptide carrying a pair of double methyla-
tions, one at R205 and the other at K209 (or possibly K210), with
the same peptide appearing in an unmodified form as well. An
examination of the Sequest search for double methylations also
reveals this pair of modifications. Because these PTMs disagree
with the top-down mass found for this protein, these PTMs had
previously been rejected. Since Sequest and DBDigger agree on
the double methylation of RRP-L3, greater confidence can be
placed in this PTM identification.

The Sequest results for RRP-L7/L12 were evaluated as reveal-
ing two isoforms. The first isoform incorporated a dimethylation
at K69 and a methylation at K86, while the second isoform was
trimethylated or acetylated at both K86 and K89. DBDigger’s
report for this protein suggests a variable single methylation at
the N-terminus or K6 (some peptides are unmodified while others
carry the PTM), single or double methylation at K69, and single
methylation at K86 (all observations of this residue bore the PTM).
Apart from the methylation of the N-terminal peptide, DBDigger’s
identified PTMs are consistent with Sequest’s for this protein.
Assessing the Sequest results for this protein was troublesome
because results from three different runs had to be collated;
discerning whether a combination of single methylations on a
particular peptide or a smaller number of multiple methylations
was the better identification led to many possible interpretations
of the Sequest results. By incorporating all of the PTMs as part
of a single search, DBDigger made it unnecessary to collate
multiple search results, and the analysis for this protein became
more straightforward.

For RRP-L11, Sequest identified a triple methylation or acet-
ylation at K40. DBDigger backs up this claim with two different
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peptides (differing by a Met oxidation), and no other methylations
were reported for this protein. The same can be said of RRP-L30
and RRP-L33, where Sequest and DBDigger agree that the only
methylations are to be found at the N-terminus or K3 (the spectra
do not differentiate between these two possibilities).

The unusual S-methylthiolation on D88 of RRP-S12 posed a
more difficult challenge. The most convincing spectra revealing
this modification came from the initial publication’s 1D LC/MS/
MS run rather than the 2D data being reexamined here. Still, these
spectra do contain evidence for this modification; the sequence
VKD*LPGVRYHILR (where * represents the 5-methylthiolation)
is identified twice from +3 precursors and once from a +2
precursor. The doubly charged identification’s MASPIC score of
23.1 was insufficient to pass the 95% confidence criterion, and the
better score for the spectra from triply charged precursors (43.8)
was also insufficient for this level of confidence.

Important lessons can be learned from comparing the pub-
lished, Sequest-based results for the ribosome sample to the new
DBDigger results. First, proteomic research can benefit from
second opinions; when two algorithms agree that evaluate matches
by completely different techniques, one can feel greater confidence
in identifications of peptides and PTMs. Second, integrating
multiple PTM searches into a single search makes it much easier
to analyze the resulting identifications. DBDigger can achieve both
these aims.

CONCLUSION
DBDigger can be faster than Sequest for two reasons: can-

didate sequences need be generated only once, and DBDigger
scores theoretical spectra against experimental spectra with the
rapid, single-pass MASPIC scorer rather than using both a fast
preliminary scorer and a slower cross-correlation comparison.
Algorithms using prescoring and final scoring cannot easily be
reorganized in this way, but systems such as OMSSA,8 PepProbe,?
and Luck! could benefit from adopting this structure. In brief, it
is faster to determine which spectra can be compared to a
particular candidate sequence than it is to determine which
candidate sequences should be compared to a particular spectrum.

The second contribution DBDigger can make is the idea of
context-dependent PTM seaching. By restricting the occurrence
of PTMs by their locations in the peptide sequence or by the
flanking amino acid residues, far fewer candidate sequences are
generated than for traditional PTMs. The analysis of CNBr digests
illustrates the utility of this feature. Cyanogen bromide cuts
proteins at the peptide bond C-terminal to Met residues, and Met
is modified to become homoserine or homoserine lactone as part
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of this cleavage. If one uses Sequest to search for these PTMs,
the algorithm is free to insert modified Met residues in the middle
of peptide sequences, even though the PTM is known to occur
only at the Met where CNBr cleaves. Other PTMs also exhibit
such specificity, such as Gln’s loss of ammonia when at the peptide
N-terminus or Asn’s loss of ammonia when it is N-terminal to Gly.3
Algorithms that implement context-dependent PTMs can substan-
tially reduce the number of candidate sequences produced, thus
accelerating the search (see Table 3) and potentially increasing
discrimination.

While the literature in proteome informatics has emphasized
systems for scoring theoretical spectra against experimental ones,
we believe that an increased emphasis on the framework in which
these scorers rest can also benefit the field. We hope to have
provided sufficient detail for DBDigger’s reorganization and
context-dependent PTM searching to be reproduced by others.
Besides the two features highlighted above, DBDigger’s design
incorporates many other features of great value: the use of unified
file formats for spectral input and identification reporting, the
ability to process multiple isotopic enrichments and multiple PTMs
in a single search, the simplicity of using multiple computers for
identification, the emphasis on modularity, etc. While many of
these features require relatively simple software engineering to
implement, their value for practical proteomics is potentially
€normous.
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