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1 OVERVIEW

STRATEGY FOR TOP-DOWN BOTTOM-UP ANALYSIS

RESULTS AND DISCUSSION

© Integrating “Top-Down” and “Bottom-Up”

+ We present a comprehensive mass spectrometric approach that
integrates intact protein molecular mass measurement (*Top-Down’)
and proteolytic fragment characterization (*Bottom-Up") to
characterize the 70S ribosome from Rhodopseudomonas palustris.

 Idenified 53 of the 54 orthologues to Escherichia coli ibosomal proteins
by bottom up analysis.

Identified 42 intact masses from top down data.

Improved accuracy i distinguishing between isoforms.

‘Assigned the amino acid positions of several post-translational
modifications.

 Checked and valdated the gene annotations for three ribosomal proteins
predicted to possess extended C-termin
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Figure 1 Rhodopseudomonas palustris CGA009
Purple nonsulfur phototrophic bacteria,

‘member of the a-subgroup of the proteobacteria
Genome sequenced by the
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o Bottom-up Analysis (Figure 2)

1D LC-MS/MS experiments were performed with an Ultimate HPLC
(LC Packings, a division of Dionex, San Francisco, CA) coupled to
an LCQ-DECA or LCQ-DECA XP ion trap mass spectromeler
(Thermo Finnigan, San Jose, CA) equipped with an electrospray
Source. Injections were made with a Famos (LC Packings) auto-
‘sampler onto a 50ul loop. Flow rate was 4 ulimin with a 160 minute
gradient for each inecton.

% A Vydac (Grace-Vycac, Hesperia, CA) C18 calumn (300um d x 25 cm,

Source.
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smaller mz ranges.

# 2D LC-MS/MS experiments were performed using a
Famos/Swichos/Ulimate 2D HPLC system (LC Packings) coupled
to an LCQ-DECA-XP ion trap equipped with a Finnigan nanospray
source.

cation exchange (SCX) (LC Packings) column (00 um id x 15mm), a LC
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© Top-Down Analysis (Figure 2)

© Al FT-ICR experiments were performed using an Ultimate HPLC (LC

Packings) coupled to an lonSpec (inine, CA) 9.4-T HiRes electrospray
Fourier transform ion cyclotron mass spectrometer (ES-FTICR-MS).
& Ay (Graco-vydac, Hospori, &) C4 column (300um id x 15 cm, 300A

5 lons were generated with an Analylca source,

myogiobin).

muliply charged ions. Thus the charged stale of an ion can be
determined solely by s Isolopic spacing.

lonSpec software.
Subset of PTMs included in Search

® For PTM identiication we included PTMs previously reported to
occur in ribosomal proteins of either E. colior eukaryotic organelles
thought to have evolved from bacteria by endosymbiosis.
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By Bottom-Up analysis:
& Methionine tuncations.
& +14 on KR (mono-methytation)
+28 on KR (0 methytaiion)

s

+42 0n K (aceryfaton of r-methylas a2
N-terminal residues (acetylaton or tr-methylaton).

& +48 on D (f-methyltiolation)
@ By Top-Down analysis any combination of methionine
truncation, acetyiation and methyation.
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Table 2 Top-Down Analysis
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